

Riscos e medidas de proteção contra incêndios em equipamentos de sistemas fotovoltaicos: a perspectiva da regulamentação técnica

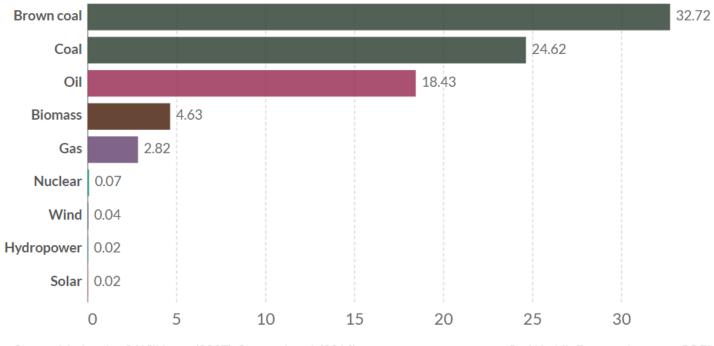
Pedro Costa

Analista da Divisão de Verificação e Estudos Técnico-Científicos (Divet) Diretoria de Avaliação da Conformidade (Dconf)

06 de julho de 2022 – Audiência Pública

A tecnologia fotovoltaica é uma fonte confiável e segura para geração de energia elétrica.

De acordo com a Agência Internacional de Energia (IEA):


componentes dos sistemas fotovoltaicos passam por rigorosos protocolos de testes de segurança e confiabilidade durante a fabricação e cumprem os requisitos de segurança por vários elétrica estabelecidos códigos e normas. Sob as condições normais de operação, e se instalados e mantidos pessoal treinado, por conforme exigido pelos códigos elétricos, sistemas não esses representam riscos à saúde. segurança ou ao meio ambiente".

(Report IEA-PVPS T12-09:2017)

Death rates per unit of electricity production

Our World in Data

Death rates are measured based on deaths from accidents and air pollution per terawatt-hour (TWh) of electricity.

Source: Markandya & Wilkinson (2007); Sovacool et al. (2016)

 $OurWorldInData.org/energy \bullet CC\,BY$

A incidência de incêndios é aparentemente baixa.

ALEMANHA (2011-2013)

430 incêndios 220 causas externas 210 causas originárias FV (48%)1.3 milhão de sistemas FV

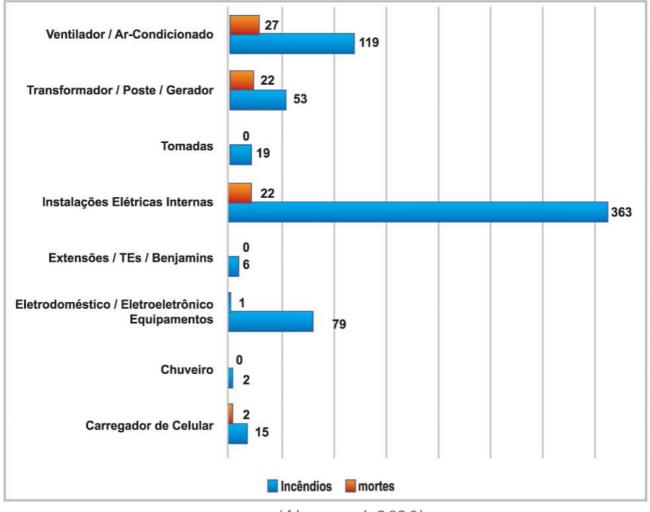
0,016%

(Fraunhofer, 2018)

ITÁLIA (2014)

1600 incêndios 590000 sistemas FV 0,27%

(Cancellliere, 2014)


JAPÃO (2008-2017)

127 incidentes 2.400.000 sistemas FV 0.005%

(Consumer Safety Investigation Commission of Japan, 2019)

Embora raros, os incêndios tem sido registrados em diversos países, podendo causar acidentes graves e prejuízos significativos, demandando um esforco coletivo para mitigação dos riscos.

Incêndios de origem elétrica por sobrecarga – Tipologia

(Abracopel, 2020)

Em momentos de crescimento acentuado e acelerado, pode haver gargalos em nas etapas de projeto e instalação, atuação de profissionais sem qualificação, utilização de produtos de baixa qualidade, propiciando uma queda na qualidade das instalações e aumento dos riscos.

Como foi observado na Alemanha nos anos 2000:

"A Lei de Venda de Eletricidade à Rede (StrEG) e a Lei de Fontes Renováveis de Energia (EEG) levaram a um boom na instalação de sistemas fotovoltaicos na Alemanha, particularmente entre os anos de 2005 a 2012.

A potência instalada das usinas de energia solar cresceu mais de 60% anualmente entre 2007 e 2010.

Em 2006, casos isolados de arcos elétricos e sua extensão para construções de telhados já puderam ser observados.

Em 2008 e 2009, os relatórios sobre incêndios de componentes fotovoltaicos aumentaram em frequência.

Em junho de 2009, o sistema fotovoltaico de telhado mais potente do mundo em Bürstadt (Hesse) pega fogo e atrai grande atenção da mídia, tornandose um tópico quente". (Fraunhofer, 2018).

INMETRO

MENSAGENS CENTRAIS

Dados e análises empíricas são muito relevantes. Podemos aprender com dados e experiências de outros países, para entender melhor o problema, evitar repetir erros e adaptar boas práticas. Mas precisamos conhecer melhor a realidade do nosso mercado e das nossas instalações fotovoltaicas.

ALEMANHA 50%

430 casos

causa

220 causas externas

210 causas originárias (48%)

1,3 milhão de sistemas FV 0,016%

(Fraunhofer, 2018)

Baixa incidência

Erros de

ALEMANHA Projeto e 103 casos Instalação

lhac do produtos

36 Falhas de produtos 18 Erros de projeto

39 Falhas de instalação

10 Fatores externos

(Fraunhofer, 2018)

ALEMANHA

210 casos Telhados

nábi % Montados nos telhados

10% Integrados nos Telhados

1% Fachadas

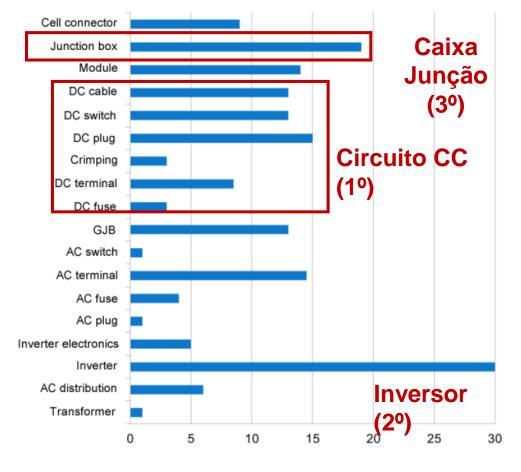
14% Telhado plano

24% Independentes

(Fraunhofer, 2018)

ALEMANHA

210 casos

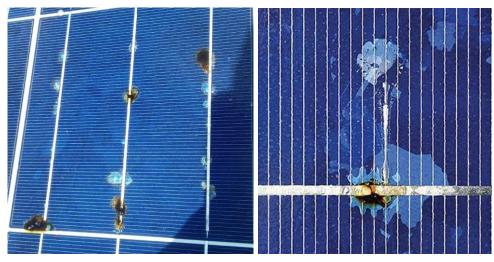

59 Dano no componente

75 Dano no sistema FV

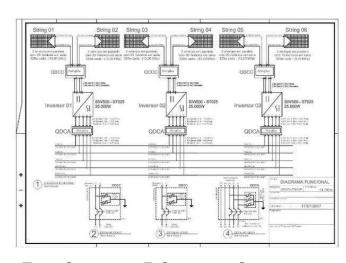
67 Dano na edificação 12 Edificação incendiada

(Fraunhofer, 2018)

174 casos de defeitos nos produtos


Dados e análises empíricas são muito relevantes. Podemos aprender com dados e experiências de outros países, para entender melhor o problema, evitar repetir erros e adaptar boas práticas. Mas precisamos conhecer melhor a realidade do nosso mercado e das nossas instalações fotovoltaicas.

- Quantos incêndios relacionados à sistemas FV?
 - Qual a frequência anual, na série histórica?
 - Quais os tipos de sistemas FV envolvidos?
 - Qual a idade dos sistemas?
 - Quais as causas?
 - Qual o componente causador?
 - Quais os danos causados?
- Qual a proporção em relação ao total de sistemas?

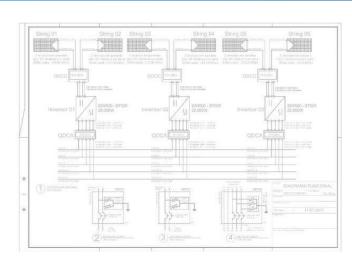

FONTES DE RISCOS DE INCÊNDIOS EM SISTEMAS FOTOVOLTAICOS

Falhas de Equipamentos

Falhas na Instalação / Execução do Projeto

Falhas de Projeto e Dimensionamento dos

Problemas de Operação e de Manutenção


INMETRO

FONTES DE RISCOS DE INCÊNDIOS EM SISTEMAS FOTOVOLTAICOS

Falhas na Instalação / Execução do Projeto

Falhas de Projeto e Dimensionamento dos

Problemas de Operação e de Manutenção

REGULAMENTAÇÃO TÉCNICA: OBJETIVOS

Portaria Inmetro n. 140/2022

PORTARIA Nº 140, DE 21 DE MARÇO DE 2022

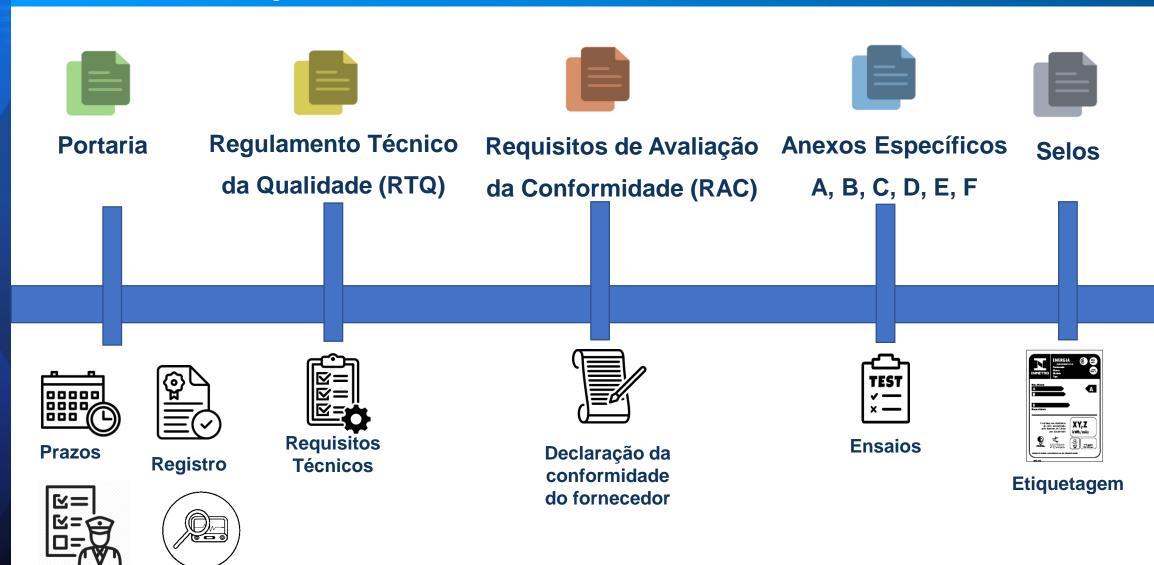
Aprova o Regulamento Técnico da Qualidade e os Requisitos de Avaliação da Conformidade para Equipamentos de Geração, Condicionamento e Armazenamento de Energia Elétrica em Sistemas Fotovoltaicos – Consolidado.

O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGÍA, QUALIDADE E TECNOLOGÍA - INMETRO, no exercício da competência que he foi outorgada pelos artigos 49, 5 º 2 º, da Lei nº 5.966, de 11 de dezembro de 1973, e 3º, incisos I e IV, da Lei nº 9.933, de 20 de dezembro de 1999, combinado com o disposto nos artigos 18, inciso V, do Anexo I ao Decreto nº 6.279, de 28 de novembro de 2007, e 105, inciso V, do Anexo à Portaria nº 2, de 4 de janeiro de 2017, do então Ministério da Indústria, Comércio Exterior e Serviços, considerando o que determina o Decreto nº 10.139, de 28 de novembro de 2019, e o que consta no Processo SEI nº 60052600.2003/7/2018-26, resolva

bjeto e âmbito de aplicação

- Art. 1º Fica aprovado o Regulamento Consolidado para Equipamentos para Geração, Condicionamento e Armazenamento de Energia Elétrica em Sistemas Fotovoltaicos, na forma do Regulamento Técnico da Qualidade, dos Regulatisto de Avallação da Conformidade e das Específicações para o Selo de Identificação da Conformidade, fixados, respectivamente, nos Anexos I, II e III desta Portaria
- Art. 2º O Regulamento Técnico da Qualidade, estabelecido no Anexo I, determina os requisitos, de cumprimento obrigatório, referentes à segurança e desempenho do produto.
- Art. 3º Os fornecedores de Equipamentos de Geração, Condicionamento e Armazenamento de Energia Elétrica em Sistemas Fotovoltaicos deverão atender integralmente ao disposto no presente Regulamento.
- Art. 4º Os equipamentos de geração, condicionamento e armazenamento de energia elétrica em sistemas fotovoltaicos, objeto deste Regulamento, deverão ser fabricados, importados, distribuídos e comercializados, de forma a não oferecer riscos que comprometam a segurança do usuário, independentemente do atendimento integral aos requisitos ora publicados.
- § 1º Aplica-se o presente Regulamento aos seguintes equipamentos de geração, condicionamento e armazenamento de energia elétrica em sistemas fotovoltaicos:
- I módulos fotovoltaicos com potência nominal igual ou superior a 5 W_p, de células de silicio monocristalino mono-Si e multicristalino multi-Si), de camadas semicondutoras de filmes finos (silicio amorfo a-S), telureto de cádmio C4Te ou seleneto de cobre, indio e gálio C4S/CIGS) ou hibridas (tecnologia heterojunção HuT); de tipos com ou sem moldura; de tipos monofacial ou bifacial; de tipos ridependente, aplicado (BAPV) ou intergado a edificações (BIPV);
- II controladores de carga e/ou descarga de baterias de tipos pulse width modulation (PWM) ou maximum power point tracking (MPPT);

- Proteger o mercado nacional de produtos inseguros e de baixo desempenho.
- Apoiar a expansão da geração distribuída fotovoltaica com uso dos mecanismos da avaliação da conformidade.
- Prover informações úteis aos usuários por meio de requisitos de marcações obrigatórias, manual de instruções e etiquetagem de produtos.


REGULAMENTAÇÃO TÉCNICA - DESIGN

Vigilância

de mercado

Controle de

importações

ABRANGÊNCIA DO REGULAMENTO

MÓDULOS

Acima de 5 W SILÍCIO CRISTALINO FILMES FINOS HETEROJUNÇÃO

INVERSORES

Até 75 kW OFF-GRID ON-GRID ON-GRID COM BATERIAS

BATERIAS

CONTROLADORES

Chumbo-ácido
Alcalinas (níquel-cádmio)
Lítio
Outras tecnologias
eletroquímicas

PWM MPPT

REQUISITOS GERAIS

Os equipamentos devem oferecer segurança aos usuários e às instalações quanto aos riscos elétricos, mecânicos e de incêndios.

FALHAS DE EQUIPAMENTOS - MÓDULOS

	Falhas do equipamento	Causas da falha	Previsão no Regulamento
	Pontos quentes - Hotspots	Sombreamento parcial, sujidades, células trincadas, descasamento – mismatch, fonte externa de calor	 Inspeção visual Não está previsto requisito ou ensaio específico
	Arco interno no módulo	Mau contato, corrosão nas conexões das células, degradação do módulo	Inspeção visualNão está previsto requisito ou ensaio específico
	Arco elétrico à terra	Falhas de isolamento	Previsto (requisito e ensaio) - Isolamento à seco - Isolamento úmido
	Superaquecimento ou arco na caixa de conexão	Mal contato, corrosão, diodo de by-pass mal dimensionado, dissipação térmica insuficiente	Não está previsto requisito ou ensaio específico
	Corrente reversa	Sombreamento, sujidades, tensão inferior entre módulos de uma string	Não está previsto requisito ou ensaio específico
	Baixa resistência ao fogo do módulo	Ignição do módulo	Não está previsto requisito ou ensaio específico

FALHAS DE EQUIPAMENTOS - INVERSORES

Risco	Causas	Requisito Regulamento
Arco elétrico em série	Mal contato de conector ou cabo	Previsto (requisito) - Classificação de existência de dispositivo de proteção - Parâmetro de funcionamento do dispositivo de proteção
Corrente de fuga excessiva	Inversor intrinsecamente gera corrente de modo comum, em valor maior que o crítico (300 mA)	Previsto (requisito e ensaio) - Detector de perda da resistência de isolação - Detector e interruptor de corrente de fuga excessiva
Sobreaquecimento	Equipamento sobreaquece acima dos valores admitidos nas especificações	Não está previsto
Surto elétrico	Descarga atmosférica, inexistência de dispositivos de proteção	Não está previsto

(Galdino, M. Cepel, 2022)

FALHAS DE EQUIPAMENTOS - BATERIAS

Risco	Causas	Requisito Regulamento
Reação exotérmica (termal runnaway)	Sobrecarga, temperaturas muito elevadas, ultrapassada temperatura de autoignição	Previsto (requisito e ensaio) - Exigência BMS - Ensaios operação do BMS
Curto-circuitose incêdio	Descarga excessiva, temperaturas muito frias	Não previsto.

INMETRO

OS INCÊNDIOS FOTOVOLTAICOS

CABOS

CONECTORES

MC4

STRING

BOX

Os incêndios envolvendo sistemas fotovoltaicos são fenômenos complexos e multifacetados que geralmente envolvem várias causas e efeitos.

INTERRUPTOR

ISOLAMENTO

INVERSOR

INTERRUPTOR MEDIDOR

DE ENERGIA

ISOLAMENTO

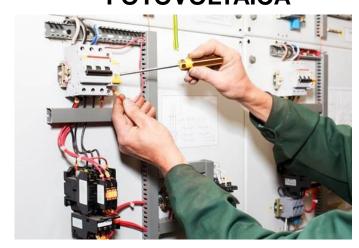
CARGAS

CONSUMIDORAS

CAIXA DE

CA

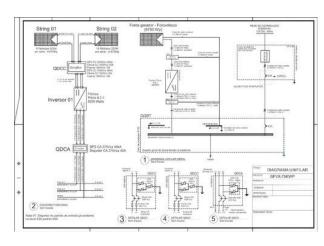
DISTRIBUIÇÃO



O REGULAMENTO NÃO ABRANGE:

SISTEMAS FOTOVOLTAICOS

INSTALAÇÃO ELÉTRICA FOTOVOLTAICA



CABOS CONECTORES DISJUNTORES OTIMIZADORES ESTRUTURAS DE MONTAGEM

PROFISSIONAIS PROJETO INSTALAÇÃO COMISSIONAMENTO

PROPOSTAS EM DISCUSSÃO E PLANO DE TRABALHO

- 1) Levantamento de dados e análise de riscos sistemática
- Entendimento do problema, abordagem técnica
- Subsídios para tomada de decisões
- 2) Aprimoramentos na regulamentação técnica
- Inclusão da obrigatoriedade de dispositivo de proteção contra arcos elétricos
- Avaliação da conformidade para cabos e conectores
- Avaliação da conformidade para instalações fotovoltaicas
- 3) Grupo de trabalho envolvendo setor produtivo, especialistas e corpo de bombeiros
- Elaboração de guias e recomendações
- Treinamento e capacitação dos profissionais de combate a incêndios
- 4) Programas setoriais da qualidade
- Qualidade das instalações fotovoltaicas
- Cabos e conectores
- 5) Desenvolvimento de novas normas técnicas
- 6) Guia de boas práticas para segurança dos sistemas fotovoltaicos

NOSSA MISSÃO

Prover a infraestrutura da qualidade para viabilizar soluções que adicionem confiança, qualidade e competitividade aos produtos e serviços disponibilizados pelas organizações brasileiras, em prol da prosperidade econômica e bem-estar da nossa sociedade.

Ouvidoria: 0800 285 1818

inmetro.gov.br

linkedin.com/company/inmetro in

instagram.com/inmetro_oficial

facebook.com/Inmetro

youtube.com/tvinmetro

twitter.com/Inmetro

slideshare.net/inmetro

flickr.com/inmetro •••

SECRETARIA ESPECIAL DE PRODUTIVIDADE, EMPREGO E COMPETITIVIDADE

MINISTÉRIO DA **ECONOMIA**

REFERÊNCIAS BIBLIOGRÁFICAS

ARAM, Monireh et al. A state-of-the-art review of fire safety of photovoltaic systems in buildings. **Journal of Cleaner Production**, v. 308, p. 127239, 2021.

LAUKAMP, Hermann et al. PV fire hazard-analysis and assessment of fire incidents. 26th EUPVSEC, 2013.

LU, Shibo; PHUNG, B. T.; ZHANG, Daming. A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems. **Renewable and Sustainable Energy Reviews**, v. 89, p. 88-98, 2018.

NAMIKAWA, Shohei et al. Photovoltaics and firefighters' operations: best practices in selected countries. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2017.

RAMALI, Mohd Rashid et al. A Review on Safety Practices for Firefighters During Photovoltaic (PV) Fire. **Fire Technology**, p. 1-24, 2022.

SEPANSKI, Annet et al. Assessing fire risks in photovoltaic systems and developing safety concepts for risk minimization. Report by US Department of Energy, Solar Energy Technologies Office (June, 2018), 2018.