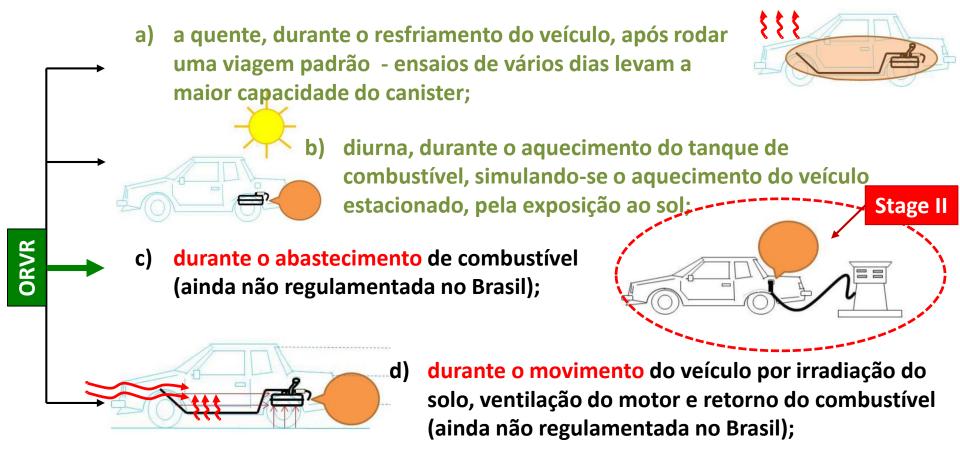


Estratégias de Controle das Emissões Evaporativas de Combustível em Postos de Gasolina

Gabriel M. Branco


Vapor de gasolina, suas fontes e efeitos na saúde pública e no meio ambiente

Preocupações

- O vapor de gasolina é tóxico
- Emissões provém dos veículos e da distribuição da gasolina.
- Três impactos principais:
 - Saúde Ocupacional frentistas (Benzeno)
 - Saúde da Comunidade
 - Meio Ambiente: precursores de Ozônio e MP

Fontes da Emissão Evaporativa no Veículo

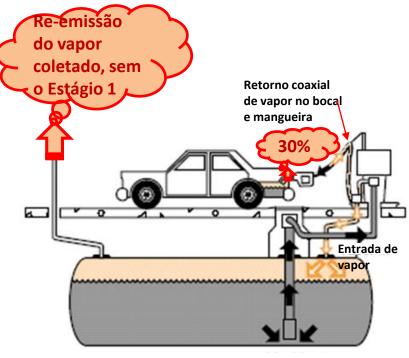


e) veículo estacionado – sistema de combustível confeccionado com materiais plásticos, passíveis de permeação (ainda não regulamentada no Brasil).

Portaria MTb 1109/2016

- 14. Controle Coletivo de Exposição durante o abastecimento
- 14.1 Os PRC devem instalar sistema de recuperação de vapores.

14.3 Os PRC novos, aprovados e construídos após três anos da publicação deste anexo, devem ter instalado o sistema previsto no item 14.1.

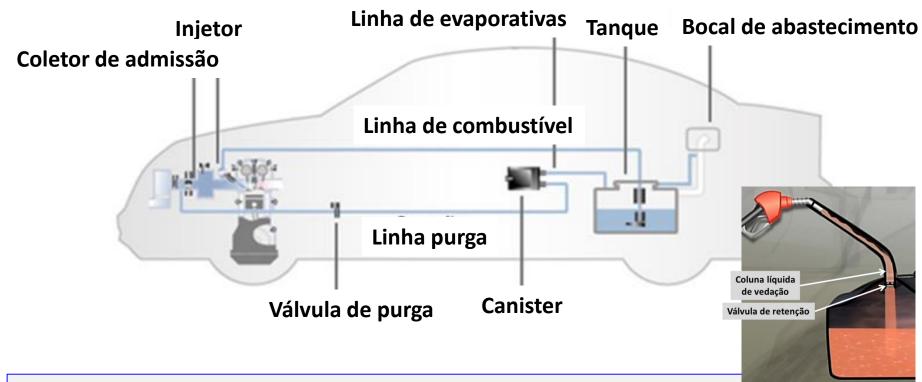

- A Portaria apresenta muitos pontos positivos
- Ajuda a proteger o trabalhador ao obrigar a captação, porém não define o destino final do vapor;

MAS...

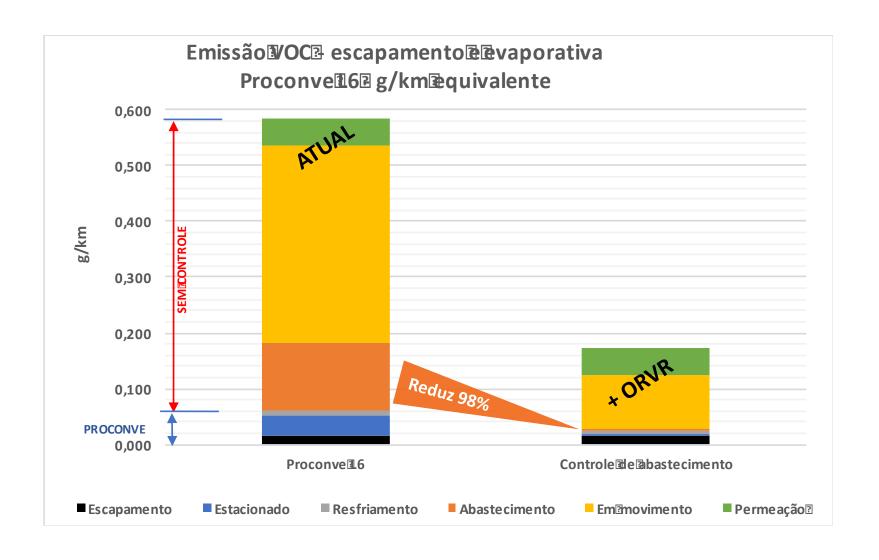
- Não menciona a implantação do estágio 1 (mandatório);
- Não prevê a coleta de vapores de gasolina dos veículos flex que abastecem com etanol mas têm gasolina no tanque;
- Não é uma solução completa para o problema ambiental

Controle no Abastecimento: Estágio II

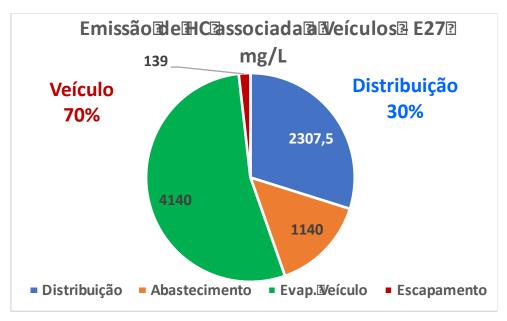
Saída de líquido


- Eficiência máxima de captação do equipamento (com estágio I): 70%
- Progressividade da implantação compromete este valor

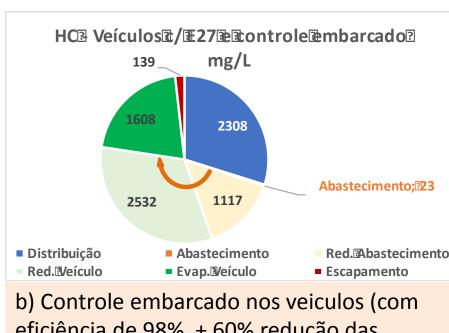
- Requer um grande programa de fiscalização do governo
- Sem o estágio I, os vapores recuperados são ventilados pelo respiro do tanque subterrâneo
- Custos US\$ 4.4Bi em 15 anos (US\$ 81K por posto)


Controle Embarcado do Abastecimento

- Selo líquido no tubo de enchimento retém vapores e evita respingos;
- Canister captura vapores com eficiência de 98% (média EPA);
- O motor aproveita o combustível capturado;
- ORVR é aplicável a todos os veículos a gasolina e flex;
- É uma ampliação do sistema atual que estende o controle à evaporação durante o movimento do veículo (running losses);
- Custos US\$ 1.4Bi em 20 anos (US\$ 25 -30 por veiculo)



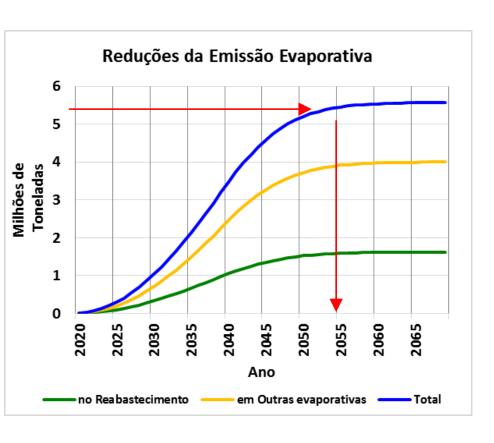
Atual Controle da Emissão Evaporativa é Parcial: Emissões Importantes NÃO são Controladas

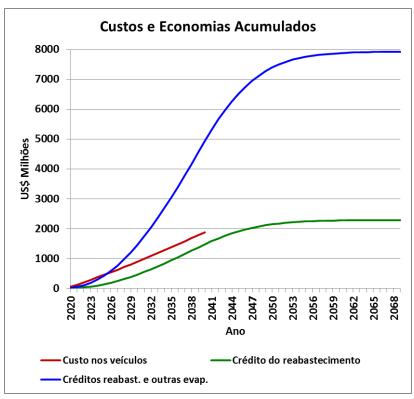


Emissão de HC/COV em Veículos Leves

Controle nos postos (Portaria MTb 1109/16)

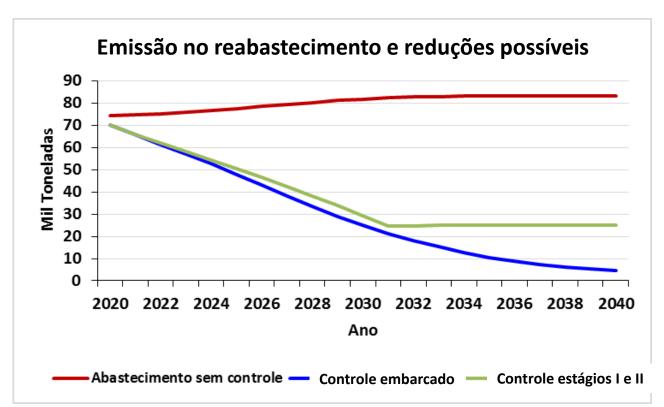
eficiência de 98% + 60% redução das outras emissões –


O valor do vapor de gasolina recuperado como combustível ultrapassa em muito o custo da tecnologia embarcada.



Resultados físicos e econômicos - ORVR

Redução Acumulada de Emissão Evaporativa incluindo o Reabastecimento: 5,5 milhões de toneladas até 2055


,5 milhões de toneladas até 2055 Custos e Economias Acumulados

Controle Embarcado X Estágio II ideal

- Implantação do Programa Estágio II → 15 anos
- Suficiente para a substituição natural da frota de veículos, inerente ao controle embarcado;
- O Estágio II acaba por ser regionalizado e perde eficácia;
- O controle embarcado protege todos os trabalhadores de postos, inclusive os mais remotos;
- O controle embarcado também controla a emissão de gasolina nas bombas de etanol quando abastecem veículos flex.

Características operacionais comparadas

Requisito	Estágio II	Embarcado
Certificação do equipamento	nova	PROCONVE
Treinamento de operadores e usuários	sim	não
Fiscalização da operação	sim	não
Depende da implantação do Estágio I	sim	não
Manutenção periódica	alta	mínima
Inspeção diária e testes operacionais	sim	não
Monitoramento automático da operação	não	sim
Crescimento do controle e abrangência geográfica (estágio II Portaria 1109/2016)	5,6% a.a. até 70% - nacional	5% a.a. até 98% - nacional
Emissão remanescente junto ao frentista	30%	2%
Reduz outras emissões evaporativas do veículo	não	sim
Crédito direto da economia de combustível	distribuidor	consumidor
Expertise para implantação	terceirizada	OEM
Número de entidades afetadas	dezenas de milhares	dezenas

Conclusão

• O controle da emissão de vapores nos postos de gasolina se justifica por razões ambientais, de saúde pública e ocupacional.

Recomenda-se a IMPLANTAÇÃO DO CONTROLE EMBARCADO para a retenção e reaproveitamento dos vapores de combustível nos próprios veículos.

PORQUE:

- A eficácia do Estágio II é limitada a 70% e depende do Estágio I;
- A eficácia do controle embarcado nos veículos atinge 98% e se estende a outras emanações ainda maiores no próprio veículo;
- O balanço de custos dos sistemas embarcados é positivo para o consumidor;
- O sistema embarcado não requer fiscalização de operação e manutenção;
- O sistema embarcado é uma tecnologia comprovada, utilizado em mais de 350 milhões de veículos nos EUA e Canadá e será implantado na China em 2020.

Comparação Visual

Respiro com estágio 2

Sem controle – 100%

Com ORVR – 2%

Obrigado!

Comparação dos Resultados e Custos

Tabela 1: Comparação dos Custos e custo-benefício entre Stage II e ORVR (2020-2040)

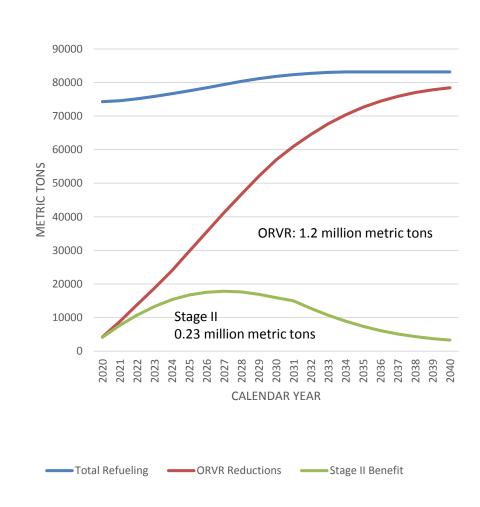
Elemento para análise	Portaria 1109 Art 14	Controle Embarcado	Estagio II c/ estágio I
Unidades Impactadas	40809 postos	72.96 milhões veículos	40809 postos
Custo Inicial Total *	US\$4.4 bi	US\$1.4 bi	US\$4.4 bi**
Economia no combustível recuperado*	~0	US\$4.8 bi	US\$0.8 bi
Custo líquido	US\$4.4 bi	US\$3.4 bi (savings)	US\$3.6 bi**
Economia / Custo inicial	~0	2.20	0.18
Redução Total de Emissões	~0 não se aplica a outras reduções do veículo	3.4 milhões de toneladas	0.58 milhões de toneladas
CUSTO/BENEFÍCIO			
Custo Inicial* /Emissão Reduzida	indefinido	US\$260/ton	US\$7500 /ton
Custo líq.*/Emissão Reduzida	indefinido	Balanço positivo para o consumidor	- US\$6200/ton

*Valor presente;

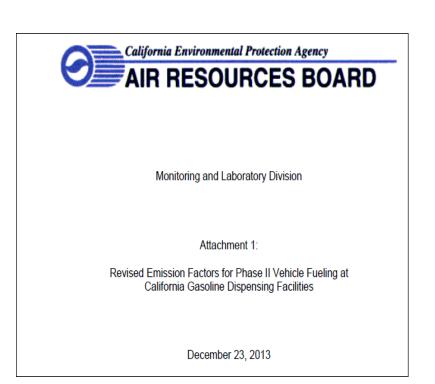
**não inclui os custos das instalações do Estágio I, nem das bombas de etanol e nem da fiscalização do Estágio II

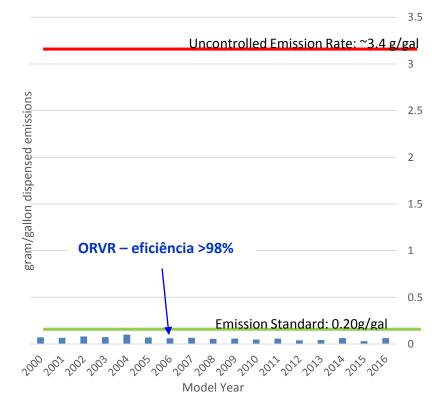
Estágio I no Posto de Gasolina

Portaria 1109 Estágio I 1380 Saída de vapor mg/litro Entrada de ar Entrada de vapor Respiro Saída Saída líquido líquido ∞ Saída de vapor Saída de vapor Entrada de líquido Entrada de líquido


- Vapores do tanque subterrâneo são reconduzidos ao caminhão durante o abastecimento;
- Reservatórios, caminhão e conexões devem ser à prova de vazamentos;
- Variações de pressão são controladas por válvulas para evitar perdas pelo respiro.

Stage II + ORVR


Stage II Incremental to ORVR Reductions


- Conceptually, ORVR and Stage II could both be implemented.
- There would be benefits for non-ORVR vehicles for stations where Stage II is implemented, but these would phase-down as ORVR phases-in.
- At about the seven year point incremental reductions from Stage II begin to decrease and by year 10 reductions from ORVR exceed a fullyphased in Stage II program. ORVR reductions are then larger than Stage II as the fleet turns over.
- The costs over 20 years would be more than the sum of the two programs since the recovery credits would occur only once.
- Stage II cost effectiveness is \$28,000/metric ton over the period.
- The government program and oversight burden for Stage II would be the same.

Requisitos operacionais comparados

A EPA/CARB consideram a eficiência de 70% para o Estágio II.

A California é lider em Estágio II nos EUA desde a sua criação nos anos 70 e está abandonando.

Resultados obtidos em mais de 3100 veículos em uso, entre 15 e 240 mil km, testados em laboratório.

Vapor de gasolina, suas fontes e efeitos na saúde pública e no meio ambiente

- O vapor de gasolina é uma mistura complexa de hidrocarbonetos
- Provém da cadeia de distribuição (Estagio I) e do reabastecimento e uso do veículo.
- Impactos na saúde pública e no meio ambiente:
 - Saúde Ocupacional:
 - > Compostos aromáticos podem ter impactos para a saúde, especialmente em frentistas.
 - Meio Ambiente e Saúde da Comunidade:
 - ➤ Vapores dos combustíveis participam da formação de ozônio, na baixa atmosfera, e contribuem para a formação de aerossóis orgânicos secundários (material particulado).
 - > Tóxicos do ar impactam nos cidadãos que vivem próximos aos postos de serviço.

As emissões evaporativas precisam ser melhor controladas em TODAS as suas formas de ocorrência:

- Mesmo com o Estágio I e o atendimento às necessidades do Estágio II, a Portaria MTb 1109/2016 estaria limitada ao controle de 70% da emissão durante o reabastecimento;
- O controle embarcado no veículo reduz 98% desta emissão e uma quantidade ainda maior durante o funcionamento do veículo.