

Ministério da **Saúde**

MINISTÉRIO DA SAÚDE (MS)

SECRETARIA DE CIÊNCIA, TECNOLOGIA E INSUMOS ESTRATÉGICOS (SCTIE)
DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA (DECIT)

INVESTIMENTOS DO Decit/SCTIE/MS NAS PESQUISAS COM TERAPIA CELULAR

AUGUSTO BARBOSA JR
Decit/SCTIE/MS

COMPETÊNCIAS DO Decit/SCTIE/MS - Decreto nº 3.496 /00 (vide Decreto nº 8.901/16)

PNCTIS

implementação e da

avaliação da Política

Nacional de Ciência

e Tecnologia

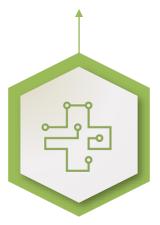
Saúde (PNCTIS)

participar

formulação,

PD&I

coordenar e executar as ações do Ministério da Saúde no campo de pesquisa e desenvolvimento em saúde



ARTICULAÇÃO

articular
intersetorialmente
no âmbito do
Sistema Nacional de
Ciência, Tecnologia
e Inovação (SNCTI) a
realização de
pesquisas
estratégicas para o
SUS

ATS

coordenar a formulação e a implementação de políticas, programas e ações de avaliação de tecnologias em saúde (ATS) no SUS


ÉTICA EM PD&I

acompanhar as atividades da Secretaria-Executiva da Comissão Nacional de Ética em Pesquisa

DESCENTRALIZAÇÃO

propor acordos e convênios com os Estados, os Municípios e o Distrito Federal para a execução descentralizada de programas e projetos especiais no âmbito do SUS

TOTAL DOS INVESTIMENTOS DO Decit/SCTIE/MS - 2002 a 2017

FOMENTO NACIONAL		PPSUS		ENCOMENDA		TOTAL	
projetos / editais	recursos R\$						
2.318/92	R\$ 682,8 M	3.103/144	R\$ 263,7 M	136	R\$ 115,3 M	5.557/236	R\$ 1,06 B

FONTE: Pesquisa Saúde – Decit/SCTIE/MS http://pesquisasaude.saude.gov.br. Acesso em 09/08/2017

INVESTIMENTOS DO Decit/SCTIE/MS EM TERAPIA CELULAR - 2002 a 2017

FOMENTO NACIONAL		PPSUS		ENCOMENDA		TOTAL	
projetos / editais	recursos R\$	projetos / editais	recursos R\$	projetos	recursos R\$	projetos / editais	recursos R\$
164/7	R\$ 102.0 M	35/25	R\$ 4.5 M	4	R\$ 13.5 M	203/32	R\$ 120.0 M

FONTE: Pesquisa Saúde – Decit/SCTIE/MS http://pesquisasaude.saude.gov.br. Acesso em 09/08/2017

40 CENTROS COLABORADORES

EMRTCC – RESULTADOS CARDIOMIOPATIA CHAGÁSICA

Heart Failure

Cell Therapy in Chagas Cardiomyopathy (Chagas Arm of the Multicenter Randomized Trial of Cell Therapy in Cardiopathies Study)

A Multicenter Randomized Trial

Ricardo Ribeiro dos Santos, MD, PhD; Salvador Rassi, MD; Gilson Feitosa, MD;
Oswaldo T. Grecco, MD; Anis Rassi, Jr, MD; Ademir B. da Cunha, MD; Valéria B. de Carvalho, MD;
Luiz César Guarita-Souza, MD; Wilson de Oliveira, Jr, MD; Bernardo R. Tura, MD, PhD;
Milena B.P. Soares, PhD; Antonio C. Campos de Carvalho, MD, PhD;
for the Chagas Arm of the MiHeart Study Investigators

Circulation. 2012;125:2454-2461; originally published online April 20, 2012; doi: 10.1161/CIRCULATIONAHA.111.067785

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2012 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7322. Online ISSN: 1524-4539

Table 3. Left Ventricular Ejection Fraction Values at Baseline and at the 6- and 12-Month Follow-Up

	Placebo Group (n=93)	BMNC Group (n=90)	Р
Baseline, %	26-1 (24.7-27.6)	26.1 (24.8-27.3)	0.985
At 6 mo, %	29.6 (27.6-31.7)	29.3 (27.4-31.1)	0.780
Difference from baseline, %	2.5 (0.6–4.5)	3.0 (1.3–4.8)	0.519
P	0.0125	0.001	
At 12 mo, %	31.1 (28.7-33.6)	30.2 (27.9-32.4)	0.559
Difference from baseline, %	3.7 (1.5–6.0)	3.5 (1.5–5.5)	0.850
P	0.002	0.001	

BMNC indicates bone marrow-derived mononuclear cell. Data are trimmed mean (95% confidence interval).

a injeção autóloga intracoronária de células mononucleares de medula óssea em pacientes com cardiomiopatia chagásica crônica é um procedimento seguro mas não foi capaz de promover melhorias na função ventricular esquerda (desfecho primário) e nem na qualidade de vida

EMRTCC - RESULTADOS CARDIOMIOPATIA DILATADA NÃO CRONICA

CLINICAL RESEARCH
Heart failure/cardiomyopathy

Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study)

Helena Martino¹, Paulo Brofman², Oswaldo Greco³, Ronaldo Bueno⁴, Luiz Bodanese⁵, Nadine Clausellé, Jaime Arnez Maldonado⁷, José Mill⁸, Domingo Braile⁹, João Moraes Jr¹⁰, Suzana Silva¹¹, Augusto Bozza¹, Braulio Santos¹, and Antonio Campos de Carvalho¹⁸, for the Dilated Cardiomyopathy Arm of the MiHeart Study Investigators¹

Institute De National de Cardiologie, Bus des Lampières, 278 féve de Proprie Clarica, Rico de Javens, PLCP 272-000. Entral Tiesen Casa de Messiciane Casa de Messiciane Casa de Messiciane Casa de Messiciane Casa de Casa de Serviciane de National Casa de Casa de Serviciane de National Casa de Serviciane Casa de Servic

Table 3 Left ventricular ejection fraction at baseline, 6 and 12 months for placebo and bone marrow mononuclear cell groups

	Placebo	BMNC	P
Baseline	24.3 (22.1 to 26.5)	24.0 (21.6 to 26.3)	0.830
6 months	25.2 (21.5 to 28.9)	22.9 (18.9 to 27.0)	0.394
Difference from baseline	0.9 (-2.1 to 4.0)	-1.1 (-5.3 to 3.2)	0.428
P	0.536	0.604	
12 months	22.1 (17.4 to 26.8)	19.9 (15.4 to 24.4)	0.469
Difference from baseline	-2.9 (-7.9 to 2.2)	-5.4 (-10.6 to -0.2)	0.469
P	0.257	0.044	

Differences from baseline to 6 and 12 months are also shown. P-values for differences between groups are shown in rightmost columns. P-values at left are differences from baseline to 6 and 12 months within groups. There are no significant differences in EF% between groups in any of the times analysed. Values are trimmed means (95% confidence intervals).

a injeção autóloga intracoronária de células mononucleares de medula óssea em pacientes com cardiomiopatia dilata não crônica é um procedimento seguro mas não foi capaz de promover melhorias na função ventricular esquerda (desfecho primário)

EMRTCC - RESULTADOS INFARTO ADUGO DO MIOCARDIO

SIGNALING MECHANISMS AND DRUG DISCOVERY
SESSION TITLE: CELL, TISSUE ENGINEERING, AND GENE BASED THERAPIES

Abstract 15289: Stem Cell Therapy in ST-Elevation Myocardial Infarction With Reduced Ejection Fraction: A Multicenter, Randomized, Double-Blind Trial. From MiHeart/AMI Investigators

Jose C Nicolau, Remo H Furtado, Carlos E Rochitte, Isolmar T Schettert, Hans F Dohmann, Suzana A Silva, Antonio C Carvalho

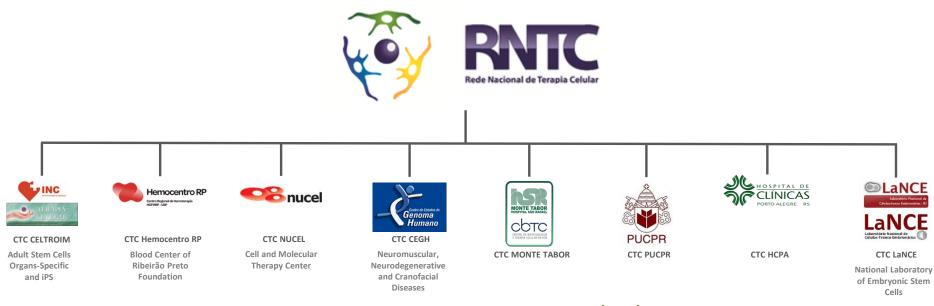
Circulation, 2016;134;A15289

Table: Left ventricular ejection fraction, left ventricular end systolic volume (LVESV), left ventricular end diastolic volume (LVEDV) and infarct size in placebo and stem cell groups.

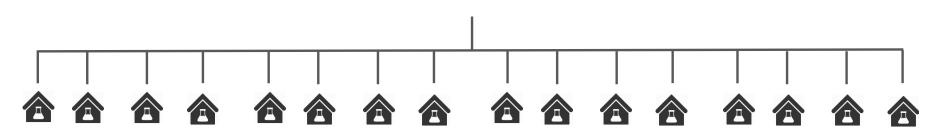
	Placebo (n = 67)	Stem cell (n =60)	P
LVEF (baseline)	44.4 ± 10.8	42,1 ± 10.7	0.21
LVEF (6 months) (%)	44.8 ± 12.8	43.5 ± 12.4	0.57
Absolute LVEF change from baseline (%)	- 1.9 ± 14.0	0.0 ± 14.2	0.40
LVESV (baseline)	92.2 ± 40.7	94.1 ± 33.3	0.78
LVESV (6 months)	99.4 ± 45.0	106.0 ± 43.0	0.40
LVESV change from baseline	3.5 ± 57.2	9.9 ± 49.5	0.44
LVEDV (baseline)	162.2 ± 44.2	160.0 ± 36.4	0.76
LVEDV (6 months) (ml)	175.8 ± 45.8	177.8 ± 43.8	0.81
LVEDV change from baseline	4.9 ± 78.4	15.0 ± 73.9	0.40
Infarct size (baseline) g	44.5 ± 23.4	46.9 ± 26.5	0.58
Infarct size (6 months)	34.1 ± 17.8	39.5 ± 23.6	0.15
Infarct size change from baseline	9.5 ± 27.1	6.3 ± 29.8	0.47

LVEF=left ventricular ejection fraction; LVESV=left ventricular end-systolic volume; LVEDV=left ventricular end-diastolic volume

a injeção autóloga intracoronária de células mononucleares de medula óssea em pacientes com infarto agudo do miocárdio é um procedimento seguro mas não foi capaz de promover melhorias na função ventricular esquerda e não há diferenças com relação ao tamanho da área de infarto (desfecho primário)

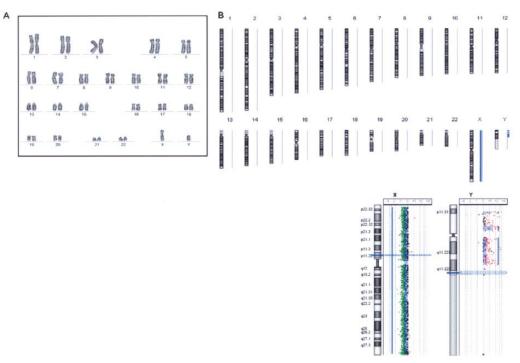

DADOS EM ANÁLISE

ANÁLISES PARCIAIS


a injeção autóloga INTRAMIOCARDICA de células da medula óssea em pacientes com cardiomiopatia isquêmica crônica é um procedimento seguro e parece contribuir para atenuação da isquemia miocárdica global (desfecho primário), particularmente em pacientes submetidos a cirurgias de revascularização incompleta

8 CENTROS DE TECNOLOGIA CELULAR (CTC)

52 LABORATÓRIOS ASSOCIADOS



Cell Transplantation, Vol. 20, pp. 431–440, 2011 Printed in the USA. All rights reserved. Copyright © 2011 Cognizant Comm. Corp. 0963-6897/11 \$90.00 + .00 DOI: 10.3727/096368910X522261 E-ISSN 1555-3892 www.cognizantcommunication.com

Establishment of a Brazilian Line of Human Embryonic Stem Cells in Defined Medium: Implications for Cell Therapy in an Ethnically Diverse Population

Ana M. Fraga,*†‡ Marina Sukoyan,§ Prithi Rajan,¶ Daniela Paes de Almeida Ferreira Braga,# Assumpto Iaconelli, Jr.,# José Gonçalves Franco, Jr.,** Edson Borges, Jr.,# and Lygia V. Pereira*†‡

Figure 5. Genomic stability of BR-1 cells. (A) Karyotype with G-banding and (B) CGH-array of cells at passage 29. DNA from a normal female (46,XX) was used as reference. Blue lines indicate differences between BR-1 and the reference DNA. The detailed view of chromosomes X and Y shows lower (green dots) and higher (red dots) content of X and Y sequences, respectively, in BR-1 when compared to the reference DNA.

Zika virus impairs growth in human neurospheres and brain organoids

Patricia P. Garcez, ^{2,1*} Erick Correia Loiola, ¹† Rodrigo Madeiro da Costa, ¹† Luiza M. Higa, ³† Pablo Trindade, ¹† Rodrigo Delvecchio, ³ Juliana Minardi Nascimento, ^{1,4} Rodrigo Brindeiro, ³ Amilcar Tanuri, ³ Stevens K. Rehen^{1,2*}

SCIENCE sciencemag.org 13 MAY 2016 • VOL 352 ISSUE 6287

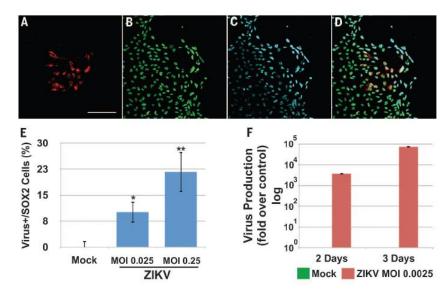
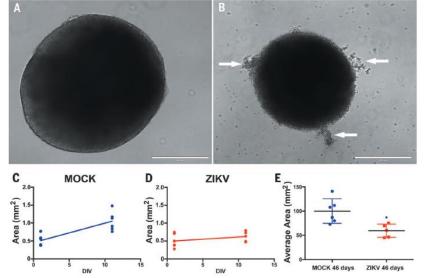
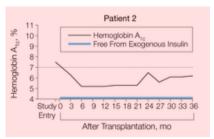
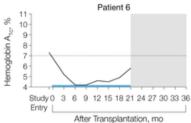
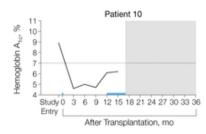


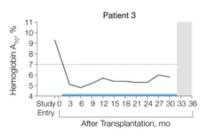
Fig. 1. ZIKV infects human NSCs. Shown are confocal microscopy images of iPS-derived NSCs doublestained for (A) ZIKV in the cytoplasm and (B) SOX2 in the nuclei, 1 day after virus infection. (C) DAPI (4 ',6- diamidino-2-phenylindole) nuclear staining. (D) Merged channels show perinuclear localization of ZIKV (red). Scale bar, 100 mm. (E) Percentage of ZIKV-infected SOX2-positive cells (MOI, 0.25 and 0.025). (F) qRTPCR analysis of ZIKV RNA extracted from supernatants of mock- and ZIKV-infected neurospheres (MOI, 0.0025) after 3 DIV, showing amplification only in infected cells. Virus production was normalized to 12-hour postinfection controls. Data are presented as means \pm SEM (n = 5). *P < 0.05; **P < 0.01; Student' s t test.

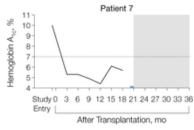


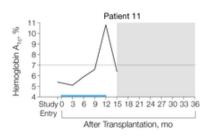

Fig. 2. ZIKV reduces the growth rate of human brain organoids. Brain organoids 35 days old were exposed to (A) mock conditions or (B) ZIKV for 11 DIV. ZIKV-infected brain organoids show reduced growth compared with the mock-infected controls. Arrows point to detached cells. Organoid area was measured before and after 11 DIV of exposure to (C) mock conditions or (D) ZIKV. Plotted lines represent the growth rate. (E) The average area of 46-DIV brain organoids, 11 DIV after mock or ZIKV infection. Data are presented as means (black bars) \pm SEM (n = 6). *P < 0.05; Student's t test.

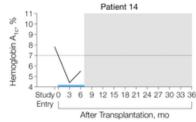

RNTC - RESULTADOS

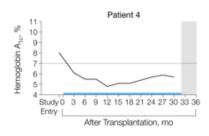


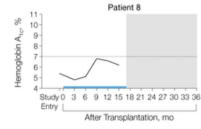

Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus

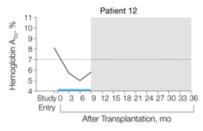

JAMA, 2007;297(14):1568-1576, doi:10.1001/jama.297.14.1568.

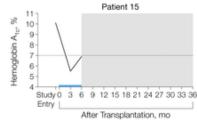


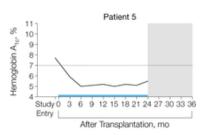


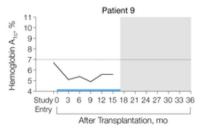


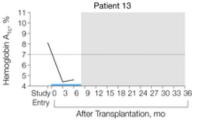


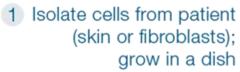


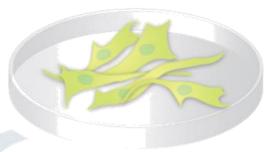












2 Treat cells with "reprogramming" factors

3 Wait a few weeks

5 Change culture conditions to stimulate cells to differentiate into a variety of cell types

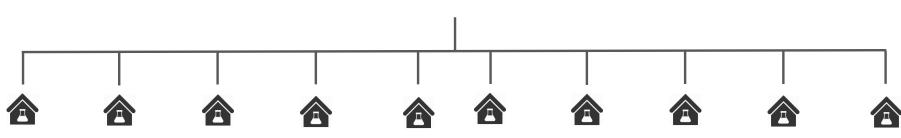
Blood cells

Cardiac muscle cells

Gut cells

OBJETIVO

prover o Brasil de um biobanco sem fins lucrativos de iPS de doenças relevantes para o país e a nível mundial, bem como de indivíduos saudáveis, com qualidade controlada para uso geral da comunidade científica

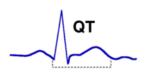

RECURSOS FINANCEIROS

Ministério da Saúde (FNS)

R\$ 5,0 M

CENTRO COORDENADOR

10 ASSOCIATE LABORATORIES



SÍNDROME DE DOWN

SÍNDROME DO QT LONGO TIPOS 1 E 2

SÍNDROME DE RETT

FIBROSE CÍSTICA

catálogo iPS

documentação

links

contato

Busca por doença crônico-degenerativa	•
Tecido de origem	•
Gênero do doador	•
Idade do doador	•

Buscar				
Código	Status do doador	Gênero do doador	Idade do doador	Tecido de origem
DABB_C2	saudável	feminino	70-79	sangue
DABB_C3	saudável	feminino	60-69	sangue
DABB_P1	acometido	feminino	80-89	sangue
DABB_P2	acometido	feminino	80-89	sangue
DABB_P3	acometido	masculino	90+	sangue

ENSAIO CLÍNICO DE FASE I/II PARA TESTAR A SEGURANÇA E EXEQUIBILIDADE DA TERAPIA COM CÉLULAS NATURAL KILLER IL-21 EXPANDIDAS PARA A TRATAMENTO DE LEUCEMIA MIELÓIDE AGUDA RECIDIVA/REFRATÁRIA - NCT02809092

DESENHO E OBJETIVO

ensaio clínico de fase I/ II aberto, não controlado para avaliar a segurança e eficácia e a dose máxima tolerada de células NK haploiendicas em pacientes portadores de LMA

RECURSOS FINANCEIROS

Ministério da Saúde (FNS)

R\$ 1.15 M

DESFECHOS

- determinar a segurança, viabilidade e dose máxima tolerada de células NK haploidênticas expandidas depois da indução quimioterápica
- determinar a persistência das células NK expandidas transferidas de forma adotiva
- determinar o imunofenótipo e função de células NK expandidas
- determinar a resposta global da LMA a este regime de tratamento, tipo de resposta (completa ou parcial) e a duração
- correlacionar a persistência, fenótipo e função das células NK com a resposta global.

ESTUDO DA SEGURANÇA E EFICÁCIA DE DUAS DOSES INTRATECAIS DE CÉLULAS-TRONCO MESENQUIMAIS AUTÓLOGAS SECRETORAS DE FATORES NEUROTRÓFICOS (MSC-NTF), OBTIDAS DE CÉLULAS ESTROMAIS DA MEDULA ÓSSEA, EM PACIENTES COM ESCLEROSE LATERAL AMIOTRÓFICA (ELA) - NCT02917681

DESENHO E OBJETIVO

ensaio clínico de fase I/ II aberto, não controlado para avaliar a segurança e eficácia de 2 injeções de células-tronco mesenquimais autólogas (MSC) – 1 e 2 meses após aspiração da médula óssea – em pacientes com esclerose lateral amiotrófica (ELA)

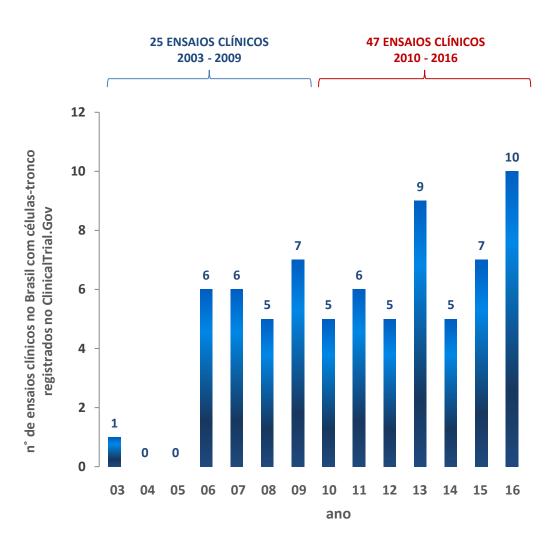
RECURSOS FINANCEIROS

Ministério da Saúde (FNS)

R\$ 5,0 M

DESFECHOS

- 10 meses de acompanhamento
- monitoramento clínico e laboratorial de possíveis reações à administração de MSC intratecal
- mudança na Escala de Avaliação Funcional da Esclerose Lateral Amiotrófica (ALSFRS-R)
- mudança na dinanometria, miografia de impedância elétrica, capacidade vital forçada (espirometria), força isométrica e nos parâmetros morfométricos do MRI do encéfalo e da medula espinhal



2008 - 2012

StemCells	FWCI	CAGR	Publications
USA	1.40	7.8%	34957
CHN	0.54	8.1%	13117
DEU	1.30	4.8%	8346
JPN	0.92	3.0%	7942
GBR	1.33	8.2%	7063
ITA	1.20	7.9%	5422
FRA	1.31	7.6%	4287
CAN	1.32	9.9%	3783
KOR	0.92	20.0%	3162
NLD	1.56	7.9%	2586
AUS	1.26	10.4%	2396
CHE	1.63	6.5%	1898
SWE	1.39	4.9%	1668
TWN	1.10	11.8%	1290
IND	0.63	27.1%	1242
BRA	0.83	22.1%	1241
ISR	1.42	3.2%	1123
SGP	1.43	15.9%	1094
IRN	0.58	31.9%	775
DNK	1.34	11.6%	682
RUS	0.40	3.3%	663

FONTE: CEuroStemCell, Kyoto University's Institute for Integrated Cell Material Sciences e Elsevier. 2013

FONTE: ClinicalTrials.Gov

