GÁS NATURAL: UMA IMPORTANTE ALTERNATIVA ENERGÉTICA PARA O BRASIL

Paulo César Ribeiro Lima
Consultor Legislativo da Área XII
Recursos Minerais, Hídricos e Energéticos

ESTUDO MAIO/2004
ÍNDICE

1 - Introdução...3
 1.1 O gás natural no mundo..4
 1.2 O gás natural no Brasil..4
 1.3 A legislação brasileira..7
2. Motivações para o Aumento do Consumo de Gás Natural...9
 2.1 Benefícios Ambientais..9
 2.1.1 Enxofre...9
 2.1.2 Dióxido de Carbono..10
 2.1.3 Monóxido de Carbono..11
 2.1.4 Óxidos de Nitrogênio...11
 2.1.6 Resoluções relativas à poluição atmosférica..12
 2.2 Benefícios Econômicos...13
3 - Cadeia Produtiva do Gás Natural...13
 3.1 Exploração..15
 3.2 Explotação..15
 3.3 Produção..15
 3.4 Transporte e armazenamento...15
 3.5 Distribuição..15
 3.6 O gás natural liquefeito – GNL..16
Principais Aplicações...16
 4.1 Indústria de petróleo..16
 4.2 Matéria-prima..17
 4.3 Domiciliar..17
 4.4 Gás Natural Veicular – GNV...17
 4.5 Setor elétrico e co-geração...18
 4.6 Combustível industrial e comercial...19
Medidas Políticas de Incentivo ao Gás Natural..21
 5.1 Política de preços...21
 5.2 Questões tributárias...22
 5.3 Financiamento...23
Sumário e Conclusões...24
Bibliografia...25

© 2004 Câmara dos Deputados.
Todos os direitos reservados. Este trabalho poderá ser reproduzido ou transmitido na íntegra, desde que citado o autor e a Consultoria Legislativa da Câmara dos Deputados. São vedadas a venda, a reprodução parcial e a tradução, sem autorização prévia por escrito da Câmara dos Deputados.
GÁS NATURAL: UMA IMPORTANTE ALTERNATIVA ENERGÉTICA PARA O BRASIL

Paulo César Ribeiro Lima

1 - INTRODUÇÃO

O gás natural é uma mistura de hidrocarbonetos e outros compostos químicos, encontrada em fase gasosa ou em solução no petróleo em reservatórios naturais subterrâneos.

Os hidrocarbonetos presentes no gás natural são os mais leves da série saturados. O principal componente do gás natural é o metano. Além do metano, podem estar presentes etano, propano, butano, pentano e pequenas quantidades de compostos parafínicos. Dependendo da jazida, estão presentes pequenas quantidades de hidrogênio, nitrogênio, gás sulfídrico, gases nobres e água.

Quanto à origem, o gás natural é classificado em:

- gás associado: encontrado dissolvido no petróleo cru ou formando uma camada gasosa sobre ele. Quanto maior a pressão, maior a quantidade de gás em solução no petróleo;

- gás não-associado: encontrado em depósitos subterrâneos, não acompanhado de hidrocarbonetos em fase líquida.

O gás natural é um combustível fóssil que pode substituir quase todos os derivados de petróleo na maioria de seus usos finais. O seu preço costuma estar atrelado ao do petróleo ou combustíveis derivados. De modo geral, os contratos internacionais indexam o preço do gás natural ao preço médio de uma cesta de óleos brutos ou aos preços dos derivados de petróleo que mais facilmente podem ser substituídos pelo gás natural.

Entre os combustíveis fósseis, o gás natural é o de melhor desempenho ambiental, apresentando menores emissões de contaminantes atmosféricos. Uma legislação ambiental rigorosa, que penalize os combustíveis mais poluentes, pode representar um prêmio significativo para o gás natural.
A utilização do gás natural tem se concentrado, tradicionalmente, em três grandes mercados: produção de calor e vapor na indústria, geração de eletricidade e uso domiciliar, para aquecimento e cocção de alimentos. Existem, ainda, outros mercados alternativos para o gás como, por exemplo, o gás natural veicular – GNV.

1.1 O gás natural no mundo

Em 2003, as reservas mundiais de gás natural chegavam a 155,8 trilhões de m³, equivalente a 81% das reservas mundiais de petróleo. Num área de fácil acesso à Europa, por meio de gasodutos ou de navios metaneiros, concentram-se 76% das reservas mundiais de gás natural: 39% no território das ex-repúblicas soviéticas, 6% na África (Argélia, Nigéria e Líbia) e 31% no Oriente Médio.

O comércio internacional de gás natural ainda é restrito e localizado, destacando-se as seguintes áreas:

- Estados Unidos e Canadá;
- Europa, em decorrência do escoamento de gás da África, ex-repúblicas soviéticas, Noruega e Holanda;
- Ásia, onde os países do Oriente Médio e da Ásia exportam gás por meio de metaneiros para o Japão e para os novos países industrializados, tais como Coréia do Sul e Formosa.

Uma análise do mercado global de energia mostra que o gás natural poderá ocupar, até 2030, uma significativa fatia do mercado, em competição com o petróleo, carvão e energia nuclear. Existem previsões de que, nesse período, o gás natural poderá suprir cerca de 70% das necessidades do mercado global de energia.

Caso esse cenário se confirme, será necessário o desenvolvimento de infra-estruturas adequadas. Investimentos em unidades de produção, gasodutos, navios de gás natural liqüefeito e inovações tecnológicas serão fundamentais. Haverá, ainda, a necessidade da formação de mão-de-obra qualificada para atender aos diversos segmentos do setor.

1.2 O gás natural no Brasil

No Brasil, a utilização do gás natural começou por volta de 1940, com as descobertas de óleo e gás na Bahia, atendendo a indústrias localizadas no Recôncavo Baiano. A produção das bacias do Recôncavo, Sergipe e Alagoas era destinada, em quase sua totalidade, para o Pólo Petroquímico de Camaçari e para a Refinaria Landulfo Alves.

O grande marco do gás natural ocorreu com a exploração da Bacia de Campos, no Estado do Rio de Janeiro, na década de 80. O desenvolvimento dessa bacia
proporcionou um aumento no seu uso. Contudo, o mercado brasileiro de gás natural ainda pode ser considerado incipiente. No ano de 2000, a participação do gás natural na matriz energética brasileira foi de apenas 3%. Ressalte-se, no entanto, que, atualmente, essa participação deve estar próxima a 7,5%.

Em governos anteriores, houve uma decisão de elevar a participação do gás natural na matriz energética para 12%, até 2010. Esse aumento da participação teve como foco a geração termelétrica. Contudo, hoje o país tem uma oferta de geração maior do que a demanda e ainda não foi desenvolvido um mercado que absorva os excedentes.

Ainda é modesta a rede brasileira de gasodutos. A figura 1.1 mostra o sistema de gasodutos da empresa de transportes do Sistema Petrobrás, a Transpetro. Ressalte-se que o Sistema Petrobrás é responsável pelo suprimento de mais de 90% do mercado brasileiro.

Números divulgados pela Agência Nacional do Petróleo – ANP apontam, em novembro de 2002, uma produção nacional de 40,1 milhões de m³ por dia e uma importação de 13,7 milhões de m³ por dia da Bolívia e da Argentina. O término do gasoduto Bolívia-Brasil, com capacidade para transportar até 30 milhões de m³ diariamente, representou um grande aumento potencial no fornecimento de gás natural no país. A produção nacional de gás natural também tem crescido, conforme mostrado na figura 1.2. Em setembro de 2003, a produção brasileira chegou a 45 milhões de m³ por dia.

Figura 1.1 – Sistema de gasodutos da Transpetro.
O recente anúncio da descoberta, pela Petrobrás, da maior reserva de gás já realizada na plataforma continental brasileira, na Bacia de Santos, evidencia a necessidade de o governo e a iniciativa privada estarem atentos e de priorizarem o planejamento de suas ações. Com essa descoberta, as reservas de gás natural do Brasil podem passar de 650 bilhões de m³, praticamente a metade das reservas da Bolívia. Ressalte-se, contudo, que essa reserva brasileira representa apenas cerca e 0,4% das reservas mundiais de gás natural.

Figura 1.2 – Produção nacional de gás natural.

Outra importante área com disponibilidade de gás é a Região Norte, principalmente no Amazonas. A reserva de gás natural próxima a Urucu é de 90 bilhões de m³. O gasoduto que ligará Urucu a Manaus (AM), a ser inaugurado em 2007, irá fornecer gás natural, principalmente, para as usinas termelétricas, que hoje funcionam com óleo combustível. Nessa região, a energia elétrica custa cerca de US$ 120 por megawatt-hora, sendo o mais elevado do país. Com a utilização do gás, esse custo pode ser reduzido a menos da metade. A construção de um gasoduto ligando Urucu a Porto Velho (RO) também poderá ser viabilizada no curto prazo.

O desafio, hoje, é desenvolver um planejamento integrado, envolvendo ações desde a produção até o uso final do gás natural. Assim, uma política nacional para o gás natural deve contemplar os seguintes pontos:

- reconhecimento do regionalismo de cada sistema (Amazônico, Nordeste e Sul- Sudeste);
- resolução da situação de equilíbrio tarifário da energia gerada por termelétricas;
- reconhecimento da importância dos mercados ditos interruptíveis;
- reestruturação do segmento de distribuição.

1.3 A legislação brasileira

As duas principais normas legais relacionadas à indústria brasileira de gás natural são a Constituição Federal e a Lei nº 9.478, de 6 de agosto de 1997, chamada de Lei do Petróleo.

A Lei do Petróleo estabelece os princípios básicos que norteiam as atividades das indústrias de petróleo e gás natural. Muitos desses princípios são apenas explicitados nessa Lei, devendo ser regulamentados pela ANP.

A ANP regula as atividades de exploração e produção, importação e exportação, processamento e transporte de gás natural. No caso do gás natural veicular, a ANP regula também a distribuição de gás natural comprimido e líquido e a venda em postos revendedores.

Existe, hoje, quase um consenso de que o gás natural necessita de uma regulação separada do petróleo. A Lei nº 9.478 não prevê tratamento adequado ao monopólio no transporte e nem trata a indústria do gás natural como rede.

O artigo 58 da Lei 9.478 introduziu no país o princípio do acesso de terceiros aos dutos e terminais marítimos destinados à movimentação de petróleo, seus derivados e gás natural. No que se refere ao transporte de gás natural por dutos, esse princípio esteve regulamentado pela Portaria ANP nº 169, de 1998, durante o período de novembro de 1998 a abril de 2001. Em fevereiro de 2001, a ANP colocou em consulta pública uma proposta de Portaria.

Dada a abrangência e complexidade do tema e a necessidade de expansão da capacidade de dutos no país, foi publicada, em junho de 2001, a Portaria ANP nº 098, introduzindo apenas uma parte da regulamentação proposta, referente à expansão de capacidade das malhas de transporte.

Para a regulamentação definitiva do livre acesso, optou-se por segmentar a minuta da consulta pública em uma série de regulamentos distintos, de acordo com os temas incluídos na minuta original. Assim, o livre acesso às instalações de transporte de gás natural, que seria regulamentado por apenas uma Portaria, será regulamentado por um conjunto de normas, conforme relacionado a seguir:

- Portaria de livre acesso às instalações de transporte de gás natural;
- Portaria que regulamenta os critérios tarifários para o transporte dutoviário de gás natural;
- Portaria que regulamenta o processo de resolução de conflito;
- Portaria de informações a serem enviadas pelos transportadores e carregadores de gás natural à ANP, ao mercado e aos carregadores;
- Portaria de cessão de capacidade de transporte de gás natural.

A Constituição Federal estabelece, em seu artigo 25, a partir da Emenda Constitucional nº 5, de 1995, que os Estados da Federação têm o direito de explorar os serviços locais de gás canalizado.

Assim, a distribuição de gás canalizado é monopólio dos Estados. As companhias distribuidoras locais são reguladas por órgãos estaduais ou pelas secretarias estaduais de energia, inclusive quanto à fixação das tarifas. A figura 1.3 mostra os níveis de competência regulatória da indústria de gás natural.

O funcionamento da lógica monopolista na distribuição depende de uma ação forte dos órgãos reguladores e dos governos estaduais. No Rio de Janeiro, por exemplo, o governo definiu metas de expansão da rede, controle de tarifas e até modelo de gestão das concessionárias.

Figura 1.3 – Níveis de competência regulatória.
Fonte: ANP
2. MOTIVAÇÕES PARA O AUMENTO DO CONSUMO DE GÁS NATURAL

O uso do gás natural, em substituição a outros combustíveis fósseis, traz ganhos ambientais para a sociedade. Se ampliarmos um pouco os horizontes, é possível vislumbrar também importantes ganhos econômicos.

2.1 Benefícios Ambientais

O gás natural é muito menos poluente que o óleo combustível ou qualquer outro combustível fóssil. Trata-se de um combustível mais limpo e ecologicamente correto. A queima do gás natural emite uma quantidade menor de material particulado, pouquíssimo óxido de enxofre – SO₂, além de emitir menos dióxido de carbono – CO₂, monóxido de carbono – CO e óxidos de nitrogênio – NOₓ.

2.1.1 Enxofre

Com relação à emissão de enxofre, o gás natural apresenta enormes vantagens em relação ao óleo combustível e ao diesel. Na verdade, a composição química do gás natural pode ser isenta de enxofre. A pequena quantidade desse elemento existente na queima do produto é resultante do odorizante. A adição de odorizante é feita por motivos de segurança, já que o gás natural é inodoro.

No óleo combustível, por exemplo, o teor de enxofre equivale a cerca de 1% do seu peso; assim, cada 100 kg de óleo combustível têm 1 kg de enxofre. A queima desse combustível emite enxofre que, ao reagir com o oxigênio, forma o SO₂. Devido a essa reação, a queima de 1 tonelada de óleo combustível emite, teoricamente, 20 kg de SO₂.

É comum encontrar óleos combustíveis com teor de enxofre acima de 1%. Na década de 70, por exemplo, o óleo combustível mais usado pela indústria brasileira, o Baixo Ponto de Fluídez – BPF, tinha 5% de enxofre.

O enxofre é prejudicial ao meio ambiente, porque é um dos maiores causadores da chuva ácida. Dependendo do grau da umidade atmosférica, ele se transforma em ácido sulfúrico, H₂SO₄ e, quando chove, a água vem carregada desse ácido, provocando corrosão, danificando a vegetação e alterando a acidez das águas dos rios. A coriza, o catarro e danos irreversíveis aos pulmões estão entre os diversos males que o enxofre provoca à saúde humana. Em doses altas, ele pode ser fatal.

A figura 2.1 mostra as emissões relativas de SO₂ formadas pela combustão de combustíveis fósseis.
2.1.2 Dióxido de Carbono

O CO₂ é resultado da queima do carbono. Ele é um gás inerte e não tóxico. Contudo, sua presença na atmosfera dificulta o retorno de algumas radiações térmicas que incidem sobre a terra. Assim, o CO₂ é um dos vilões do aquecimento global, o chamado efeito estufa.

A figura 2.2 abaixo mostra um gráfico de quilograma (kg) de CO₂ formado por gigajoule (Gj) de energia gerada por meio da combustão de alguns combustíveis fósseis.
2.1.3 Monóxido de Carbono

O CO é resultado da queima incompleta do carbono e é muito prejudicial à saúde do homem, pois desloca elementos no sangue e dificulta a oxigenação. A diminuição da oxigenação do sangue causa tonturas e vertigens. Além disso, provoca alterações no sistema nervoso central e pode ser fatal em doses altas. Doentes cardíacos, portadores de angina crônica, são muito suscetíveis aos efeitos da exposição ao CO.

2.1.4 Óxidos de Nitrogênio

O monóxido e o dióxido de nitrogênio, respectivamente NO e NO₂, são resultados da combinação do nitrogênio, em alta temperatura, com o oxigênio, formando o NO e o NO₂. Quanto mais alta a temperatura, maior será a formação desses dois gases poluentes. Na atmosfera, esses gases podem reagir com a água e formar chuva ácida (ácido nítrico) ou acidificar a água da chuva, causando o mesmo efeito do ácido sulfúrico.

Além disso, o NO e o NO₂ são instáveis e reagem com muita facilidade na atmosfera e se transformam em outras substâncias. A ação da radiação ultravioleta, presente na luz solar, propicia a liberação de uma molécula de oxigênio, que se associa ao oxigênio presente no ar, formando o O₃, que é o Ozônio. Essa substância é prejudicial à saúde, pois irrita as mucosas. Ele faz parte de um grupo de poluentes, chamados de oxidantes fotoquímicos, que são
elementos que se formam na atmosfera, na presença da luz, devido à presença de diversos poluentes.

A figura 2.3 mostra as emissões relativas de NO\textsubscript{x} formadas pela queima de combustíveis fósseis.

Figura 2.3 – Emissões de NO\textsubscript{x} – Relativas.

Fonte: Eurogas

2.1.6 Resoluções relativas à poluição atmosférica

Descrevem-se, a seguir, as principais resoluções do Conselho Nacional do Meio Ambiente – CONAMA, relativas à poluição atmosférica.

A Resolução nº 5, de 1989, instituiu o Programa Nacional de Qualidade do Ar – Pronar. Essa Resolução estabelece padrões de emissão, ou seja, limita a quantidade de poluição que pode ser emitida por uma determinada fonte. Outra exigência é com relação à máxima concentração que determinado poluente pode ter no ar.

A Resolução nº 3, de 1990, estabelece padrões de qualidade do ar para todo o território brasileiro, determinando a quantidade de material particulado em suspensão. Além das partículas mais grosseiras, são emitidas também as chamadas partículas inaláveis, inferiores a 10 microns, que são as mais prejudiciais à saúde. Na maioria dos casos, nem percebemos que as respiramos; só depois notamos os males por elas causados.
A Resolução nº 8, de 1990, estabelece padrões de emissões para queima de combustível em relação a material particulado e SO₂. Essa Resolução é específica para óleos combustíveis e carvão. O CONAMA não estabelece padrões para emissões decorrentes da combustão do gás natural.

2.2 Benefícios Econômicos

No século XXI, a geração e a disponibilidade de energia são de importância vital para o planeta. O gás natural tem se consolidado como uma das alternativas mais atraentes. A necessidade de se ampliar a infra-estrutura de energia é uma questão prioritária para o desenvolvimento socioeconômico das nações.

O gás natural pode ter impactos positivos na melhoria de processos industriais, uma vez que o gás não provoca corrosão, aumentando, assim, a vida útil dos equipamentos. No setor industrial, o gás natural pode proporcionar menores custos de produção.

Algumas vantagens macroeconômicas do gás natural são abaixo discriminadas:

- diversificação da matriz energética;
- geração de energia elétrica junto aos centros de consumo;
- não exige tratamento dos gases de combustão;
- rápida dispersão de vazamentos;
- menor investimento em armazenamento;
- menor corrosão dos equipamentos e menor custo de manutenção;
- elevado rendimento energético;
- pagamento após o consumo.

3 - CADEIA PRODUTIVA DO GÁS NATURAL

A cadeia produtiva do gás natural, apresentada na figura 3.1, pode ser dividida em duas grandes etapas. A primeira refere-se à obtenção do produto em si, chamada de upstream, e a segunda relaciona-se à aplicação do produto, chamada de downstream.
Figura 3.1 – Cadeia produtiva do gás natural.

Fonte: Centro de Tecnologias do Gás – CTGÁS
3.1 Exploração

A exploração focaliza a probabilidade de ocorrência do gás natural numa determinada formação geológica ou campo. Abrange os estudos geológicos de uma região geográfica, a aplicação de ferramentas de avaliação do potencial gasífero e a determinação da viabilidade comercial de se explorar o campo.

3.2 Explotação

Na fase de explotação, têm-se as atividades de perfuração, completação e recompletação de poços, além do projeto das instalações para permitir a operação comercial do poço.

3.3 Produção

Nessa fase, têm-se as atividades de produção, processamento e o transporte até a base de armazenamento ou estação de recompressão mais próxima.

O primeiro processamento é chamado de primário. Ele é um processamento preliminar, realizado no campo de produção ou na plataforma, de modo a retirar frações pesadas do gás natural e permitir sua compressão e envio para terra, ou até a estação de tratamento mais próxima. Um segundo processamento é feito nas Unidades de Processamento de Gás Natural – UPGNs, a fim de se recuperar hidrocarbonetos líquidos e de se obter o gás natural.

3.4 Transporte e armazenamento

Nessa fase, são realizadas as atividades relacionadas ao transporte por gasoduto ou navio (gás natural líquefeito) e ao armazenamento. No Brasil, ainda não existe a fase de armazenamento de gás natural, que, entretanto, existe em países de clima frio. Nesse caso, o armazenamento é feito durante o verão, em cavernas, de modo a formar um estoque regulador para o inverno.

3.5 Distribuição

Na distribuição, o gás natural é movimentado pelas empresas distribuidoras, até chegar aos consumidores. A diferença entre transporte e distribuição está na pressão e no volume de gás envolvidos. O transporte ou transmissão tem como objetivo deslocar grandes volumes de gás, por meio de gasodutos de grande diâmetro, desde os campos de produção até os chamados city gates. A distribuição tem como objetivo o deslocamento do gás no
interior das cidades, até chegar aos consumidores finais, ou para atendimento a clientes industriais, muitas vezes localizados na periferia das cidades.

3.6 O gás natural liqüefeito – GNL

A liqüefação do gás natural exige temperaturas de -161ºC e reduz seu volume 600 vezes. Essa operação já era conhecida desde a primeira metade do século XX, quando foi usada para extrair hélio do ar. Após um rápido desenvolvimento entre 1960 e 1980, o GNL teve seu desenvolvimento comercial reduzido pela chegada à Europa dos grandes gasodutos vindos da Sibéria e pelo abastecimento do mercado americano pelos vizinhos Canadá e México.

Na virada do século XXI, somente o Japão, Coréia do Sul e Formosa, inatingíveis por gasodutos, representavam mercados importantes para o GNL, vindo principalmente da Indonésia, Golfo Pérsico e Austrália. As quatro unidades do litoral americano do Atlântico, muito ativas em décadas anteriores, estavam paralisadas.

Essa situação está a caminho de inverter-se substancialmente, pois, hoje, o GNL é uma das mais promissoras áreas de atividade na indústria do gás. Os motivos são de natureza comercial e tecnológica. Novas tecnologias reduziram os altos custos das instalações de liqüefação, dos navios especializados para o transporte do produto e das próprias unidades de regaseificação.

O aumento da demanda de GNL no mundo e a descoberta de novas reservas fez ressurgir o interesse pelo GNL no Brasil. Existem informações de que estão sendo feito estudos para a instalação de uma grande unidade de liqüefação que usaria o gás boliviano. Seria necessário um investimento de US$ 2 bilhões para liqüefazer os volumes que têm de ser importados da Bolívia, por força do contrato take or pay, hoje em vigor.

PRINCIPAIS APLICAÇÕES

O gás natural pode ser usado na própria indústria do petróleo, como combustível, para fornecimento de calor, para geração e co-geração de energia, como matéria-prima nas indústrias siderúrgica, química, petroquímica e de fertilizantes, e na área de transportes, como substituto de outros combustíveis veiculares.

4.1 Indústria de petróleo

Na indústria de petróleo, utiliza-se o gás natural para o consumo interno e para injeção em reservatórios, a fim de aumentar a recuperação de petróleo. Em razão da
disponibilidade no próprio local de trabalho, a substituição de combustíveis tradicionais pode trazer substancial redução dos custos.

4.2 Matéria-prima

Como matéria-prima, o gás natural é utilizado na indústria petroquímica, para a produção, por exemplo, de metanol, e na indústria de fertilizantes, para a produção de amônia e uréia.

4.3 Domiciliar

O gás natural pode ter uso domiciliar na cocção de alimentos, em substituição ao gás liquefeito de petróleo – GLP e à lenha, no aquecimento de água e na climatização de ambientes, em substituição à energia elétrica.

4.4 Gás Natural Veicular – GNV

O gás natural é uma opção técnica e economicamente viável como combustível para veículos de passeio. Também pode ser usado em veículos pesados, movidos a diesel. O gás natural reduz os custos de manutenção e aumenta a vida útil do motor.

A primeira utilização do gás natural como combustível veicular teve lugar na Itália, em meados da década de 1930. Esse país manteve a liderança mundial em termos de veículos movidos a gás natural até o princípio da década de 1990, quando foi suplantado pela Argentina.

Atualmente, a Argentina possui uma frota de 926 mil veículos contra 434 mil veículos italianos. O Brasil teve sua frota estimada, no ano 2002, em 380 mil veículos, posicionando-se, então, no terceiro lugar no ranking mundial. O Paquistão, com uma frota de 280 mil veículos, ocupava o quarto lugar. No entanto, acredita-se que o Brasil já conte, hoje, com uma frota de mais de um milhão de veículos movidos a gás natural, tendo arrebatado da Argentina, nos primeiros meses do corrente ano, a liderança mundial nesse setor.

Dessa forma, o país encontra-se entre os maiores mercados de GNV do mundo, refletindo o grande impulso de conversões de veículos registradas nos últimos três anos.

O fato de consumirmos menos gás natural do que o volume contratado com a Bolívia tem gerado um claro esforço no sentido de se promover a utilização do gás natural em veículos leves. Esse esforço também está relacionado a um desempenho abaixo do esperado na implantação de usinas termelétricas movidas a gás natural.
O preço convidativo em algumas localidades tem estimulado a utilização do gás, principalmente no segmento de táxis, no qual a elevada quilometragem diária justifica o custo da conversão dos motores a gasolina ou a álcool para uso desse combustível.

No entanto, o uso de GNV tem uma série de implicações para usuários, distribuidores e mesmo para a economia nacional. A primeira é que ele precisa ser armazenado a altíssimas pressões, tanto nos postos de revenda quanto nos próprios veículos, o que exige todo cuidado técnico.

Outra questão é o investimento nos postos de revenda, muito mais elevado se comparado ao de um posto convencional. A disseminação do GNV depende de dutos de passagem nas proximidades, fato pouco comum, já que a malha de distribuição do produto é deficiente e um dos grandes entraves ao desenvolvimento desse mercado.

O GNV deveria ser direcionado, principalmente, para substituir óleo diesel em frotas cativas, nas quais as vantagens econômicas e ambientais são inquestionáveis. Já que o país tem de pagar pelo gás natural contratado, ele poderia ser utilizado para reduzir a conta da importação de diesel.

Em 2002, foi desembolsado US$ 1,09 bilhão em importações de diesel, com gasto médio de US$ 170,3 por m³ desse combustível. O preço do gás natural importado, que o próprio governo reconhece como sendo elevado, é de US$ 80,6 por mil m³, menos da metade do pago pelo óleo diesel, já que mil metros cúbicos de gás substituem aproximadamente um metro cúbico de diesel.

4.5 Setor elétrico e co-geração

O gás natural pode ser usado para geração de energia elétrica, a partir de turbinas a gás, de motores a combustão interna e, até mesmo, de células de combustível.

A inserção do gás natural na matriz energética nacional foi desenhada com foco na expansão da geração elétrica por usinas térmicas. De fato, geração termelétrica tem potencial para alavancar o mercado, devido ao seu elevado consumo. A previsão era de que 54% dos 72 milhões de m³ comercializados diariamente, em 2005, seriam consumidos pelas termelétricas.

O problema é que o aumento na capacidade de geração não chegou a tempo de evitar a crise de energia que afetou o país entre 2001 e 2002. Passada a crise, a principal conseqüência foi a redução na demanda elétrica. Assim, o que era escassez de oferta tornou-se excesso, com prejuízo para a geração termelétrica, que é mais cara.

Das usinas previstas no Programa Prioritário de Termeletricidade – PPT, pelo menos 4 mil megawatts (MW) estão assegurados, pois já entraram ou entrarão em operação
em breve. Ressalte-se que existe uma capacidade que, devido à redução na demanda e à recuperação dos reservatórios, encontra-se ociosa.

Dos 26 milhões de m³ consumidos diariamente, cerca de 6 milhões de m³ são destinados às termelétricas, volume esse que poderá passar dos 23 milhões de m³, com a entrada em operação de novas usinas. O problema será direcionar essa produção de 23 milhões de m³ para o mercado convencional, quando as usinas não estiverem despachando energia.

Ao contrário do que se diz, as termelétricas não devem se transformar em líderes e alavancadoras do consumo de gás natural no Brasil. É verdade que há espaço para geração termelétrica, mas ele é limitado. O gás tem outros mercados e usos mais nobres. É muito mais eficiente se ter um chuveiro a gás do que produzir energia elétrica, a partir do gás, para alimentar um chuveiro elétrico.

O gás natural também pode ser utilizado em sistemas de co-geração de energia, que é a produção sequencial de mais de uma forma útil de energia, a partir do mesmo energético. Dessa forma, a energia dos gases de exaustão de um sistema térmico pode ser aproveitada, por exemplo, em um sistema de turbina a gás para gerar energia elétrica.

A co-geração pode ser também realizada por meio de motores convencionais a gás que, além da energia contida na descarga, disponibilizam o calor da água para arrefecimento. Outro exemplo é o do aquecimento interno de automóveis, onde o ar da ventilação é aquecido pela água que sai quente do circuito de arrefecimento do motor.

4.6 Combustível industrial e comercial

O gás natural vem sendo utilizado na substituição de vários combustíveis como, por exemplo, madeira, carvão, óleo combustível, diesel, GLP e de energia elétrica, tanto em indústrias como no comércio. O gás natural proporciona uma combustão limpa, isenta de agentes poluidores, ideal para processos que exigem a queima em contato direto com o produto final, como na indústria de cerâmica e de vidro e na fabricação de cimento.

Em um equipamento térmico, operando com qualquer combustível, busca-se atender aos seguintes objetivos:

- baixo custo operacional;
- combustão completa com segurança e operacionalidade;
- máxima eficiência térmica;
- emissão de poluentes dentro dos padrões regulamentares.
Atender a esses objetivos simultaneamente supera a técnica tradicional de controle de combustão, tornando-se um processo complexo de otimização. As características do gás natural fazem dele uma excelente alternativa, devido às seguintes vantagens:

- não são necessárias manipulações ou preparação antes da combustão;

- é facilmente miscível com o ar, obtendo-se um contato íntimo entre o combustível e o ar, reduzindo-se o excesso de ar necessário para assegurar a combustão completa;

- o gás flui com facilidade. Basta uma válvula para regular com precisão as vazões de ar e gás. Podem-se obter grandes e rápidas variações de vazão, mantendo-se constante a relação de mistura;

- praticamente não contém impurezas. Não origina depósitos de resíduos que contaminam a produção, ou que afetam a eficiência do equipamento, ou instalações;

- permite várias configurações e tipos de queimadores, além de grande flexibilidade no seu funcionamento. A eficiência dos sistemas de combustão a gás natural é em geral maior, pois permite maior flexibilidade de regulagem e controle dos equipamentos.

O gás natural pode ser utilizado em caldeiras, em substituição ao óleo combustível, para gerar vapor ou aquecer fluido térmico, em aquecimento nas indústrias de alimentos, papel e celulose, têxtil etc. Também pode ser utilizado em substituição ao gás líquefeito de petróleo – GLP em oxicorte.

O uso em fornos industriais é amplo, sobretudo devido à ausência de cinzas e ao baixo teor de enxofre, que poderiam contaminar o produto. O contato direto dos produtos da combustão com produtos alimentícios, apesar de prática usual, não é recomendável, devido à presença de hidrocarbonetos.

Na substituição do óleo combustível em caldeiras, não são necessárias mudanças estruturais e, quase sempre, é possível instalar os queimadores de gás em torno das lanças de óleo. As lanças de óleo podem ser mantidas, por medida de segurança, para se dispor de um combustível suplementar, ou de emergência. De modo geral, podem ser utilizados os mesmos dispositivos de controle.

A conversão ao gás natural resulta, normalmente, em um aumento de rendimento, devido à redução do excesso de ar e da redução de deposição de cinzas sobre as superfícies. Dependendo do tipo de caldeira, a temperatura do vapor superaquecido poderá manter-se ou aumentar. Testes realizados em caldeiras mostram que, apesar de as perdas pela chaminé aumentarem cerca de 2,5%, devido à presença de mais vapor d’água, o rendimento total aumenta em cerca de 3,5%.
MEDIDAS POLÍTICAS DE INCENTIVO AO GÁS NATURAL

Garantir preço competitivo e infra-estrutura adequada são dois preceitos para a expansão do mercado de gás natural no Brasil. Esses preceitos dependem de uma ação coordenada entre União, Estados, Municípios, importadores, produtores, transportadores e concessionárias de distribuição. Essa articulação tem que corrigir os erros cometidos no passado, que vão desde a vinculação da legislação do gás à do petróleo até a ausência de concorrência em importantes regiões metropolitanas.

5.1 Política de preços

O preço do gás natural vendido às distribuidoras é composto, fundamentalmente, por duas parcelas, uma referente ao próprio produto (commodity) destinada a remunerar o produtor, e outra denominada tarifa de transporte, destinada ao serviço de movimentação do gás entre as áreas de produção e consumo.

O preço do gás natural nacional nos pontos de entrega às distribuidoras estaduais (city gates) é regulado pela Portaria Interministerial nº 3, de 17 de fevereiro de 2000, publicada pelos Ministérios de Minas e Energia e da Fazenda.

O reajuste da commodity é baseado, principalmente, na variação de preços da cesta de óleos combustíveis similar à utilizada no contrato de fornecimento do gás natural da Bolívia, fazendo convergir as regras para o gás nacional e o gás importado. As tarifas de transporte são definidas pela ANP e calculadas a partir das distâncias médias e do volume de gás transportado.

A Portaria nº 45, de 9 de abril de 2002, da ANP, estabeleceu as Parcelas Referenciais de Transporte para o cálculo dos preços máximos do gás natural de produção nacional para vendas à vista às empresas concessionárias de gás canalizado.

Essa política de preços substituiu a simples paridade entre o preço do gás e o do óleo, que tinha como principal inconveniente a contaminação da parcela do preço referente ao custo do transporte do gás. A parcela de preço formada pelo custo do transporte passou a ser corrigida por índice de variação de preços interno do Brasil.

A Portaria Interministerial nº 3 também estabeleceu que não há diferenciação de preços do gás natural nos city gates, em razão do uso final do combustível. A política de diferenciação ficou sendo de responsabilidade das agências reguladoras estaduais e suas concessionárias de distribuição, que conhecem melhor suas necessidades locais e o perfil dos seus consumidores.
Já para o gás natural importado, o preço de venda às distribuidoras locais já havia sido liberado desde a publicação da Portaria Interministerial nº 3. O preço do produto e as tarifas de transporte nesse caso vêm, desde então, sendo negociados livremente entre as partes.

A Portaria Interministerial nº 234, de 22 de julho de 2002, fixou o preço máximo do gás natural destinado à produção de energia elétrica para as usinas integrantes do PPT que entrem em efetiva operação comercial até 31 de dezembro de 2004. Não se sabe, no entanto, qual será o preço depois dessa data.

Diante do exposto, torna-se evidente a necessidade de criação de uma política de preços para o gás natural, que incentive os setores produtivos onde haja ganhos sociais e aumento da competitividade. Setores como, por exemplo, o químico, o siderúrgico e o de cerâmica vermelha devem ser priorizados. O setor ceramista adquire lenha, cujo uso é poluente e responsável pela devastação de parte de nossas matas, a um custo energético 40% inferior ao do gás natural.

A Associação Brasileira das Empresas Distribuidoras de Gás Canalizado – ABEGÁS enviou proposta ao Ministério de Minas e Energia, pela qual seria criado um índice a partir dos preços de óleo combustível praticados nas diferentes regiões do país. Esse índice serviria de referência para o preço do gás e seria calculado pela Fundação Getúlio Vargas.

Destaque-se que, no início do ano, a Petrobrás informou que aprovou uma nova política de preços do gás natural para transporte coletivo urbano. A empresa esclarece que a proposta contempla a garantia do fornecimento, para as frotas de ônibus, por dez anos, período em que se prevê a venda de um metro cúbico de gás natural ao preço de 55% do valor do litro do óleo diesel.

5.2 Questões tributárias

Incentivos fiscais são de fundamental importância para consolidação do gás natural como alternativa energética. Para o gás natural, não há incidência da Contribuição de Intervenção no Domínio Econômico – CIDE e a alíquota de Imposto sobre Operações Relativas à Circulação de Mercadorias e sobre Prestação de Serviços de Transporte Interestadual e Intermunicipal e de Comunicação – ICMS é, em geral, menor que a de outros combustíveis.

Está em tramitação na Câmara dos Deputados o Projeto de Lei nº 675, de 2003, que estende a isenção do Imposto sobre Produtos Industrializados – IPI aos automóveis movidos a gás natural adquiridos por taxistas. Atualmente, estão isentos do IPI apenas os veículos para taxistas movidos a álcool ou por sistema reversível de combustão.

Seria muito importante que fossem também isentos de IPI os ônibus utilizados em transporte coletivo movidos a gás natural, principalmente nas grandes cidades. Nesse caso, os benefícios ambientais justificam a isenção do IPI.
Alguns Estados estão concedendo incentivos fiscais relativos ao ICMS. No Rio de Janeiro, foi promulgada, em agosto de 2002, a Lei nº 3.916, que cria o programa de incentivo fiscal para a utilização de gás natural nas indústrias de cerâmica vermelha (olarias). Essa lei determina que as indústrias abrangidas por ela ficarão isentas das alíquotas do ICMS sobre o consumo de gás pelo prazo de dez anos, além de desconto no preço de 20%, estabelecido pela concessionária do Estado.

Serão beneficiados os contribuintes que exerçam exclusivamente atividade industrial do ramo de cerâmica vermelha. A Secretaria de Estado de Fazenda e Controle cadastrará as indústrias abrangidas e, somente após o cadastro, elas poderão usufruir desses benefícios.

As indústrias beneficiadas por essa lei deverão investir um percentual de seu lucro na construção de uma sede social, uma creche e em programas destinados ao bem estar social de seus trabalhadores.

No Estado do Rio de Janeiro, automóveis convertidos para gás natural recebem uma significativa redução de IPVA. Nesse caso, a alíquota do IPVA passou de 4% sobre o valor de mercado de um automóvel a gasolina para apenas 1%.

Em Sorocaba (SP), foi concedida isenção total de impostos e taxas municipais para a concessionária de gás natural responsável pelo fornecimento de gás natural na cidade. A isenção de impostos municipais é pelo prazo de doze anos, a contar do exercício fiscal de 2001. A concessionária não terá que pagar qualquer valor à Prefeitura Municipal de Sorocaba, referente ao Imposto Territorial e Predial Urbano – IPTU do imóvel onde está localizada a sua sede e nem mesmo taxas que incidam na aprovação de projetos de construção, de instalação ou de ampliação de rede de dutos destinadas à distribuição de gás natural no município.

5.3 Financiamento

Fontes de financiamento são fundamentais para viabilizar os grandes investimentos necessários para aumentar a participação do gás natural na matriz energética brasileira.

Para que o gás natural possa chegar aos consumidores, fazem-se necessários investimentos por parte das empresas produtoras, transportadoras e distribuidoras. São investimentos na exploração, na construção de unidades de produção e processamento, nas malhas de gasodutos e nos sistemas de compressão.

Esses investimentos, em especial nas malhas de transporte e distribuição, devem ser considerados como infra-estrutura e, assim, contar com a participação direta dos governos Federal, Estaduais e Municipais, de modo a viabilizá-los.
Aos consumidores, cabem investimentos na adequação dos equipamentos para receber o gás natural, em substituição ao energético usual, seja ele sólido, líquido ou mesmo gaseoso, para o que, consequentemente, também necessitam de financiamentos. Como se trata de investimentos em tecnologias limpas, fontes especiais devem ser oferecidas, uma vez que têm impacto na conservação do meio ambiente.

O Programa de Apoio a Investimentos em Petróleo e Gás – PROGAP é uma linha de financiamento do Banco Nacional de Desenvolvimento Econômico e Social – BNDES para empresas privadas e foi elaborado com o objetivo de apoiar a implantação, ampliação e modernização dos empreendimentos do setor de petróleo e gás, estendendo-se por toda a cadeia produtiva.

Os investimentos financiáveis são:
- desenvolvimento da produção de campos de petróleo e gás natural, inclusive de recuperação de campos maduros;
- refinarias e unidades de beneficiamento de gás;
- dutos de transporte e de distribuição de petróleo e gás natural, inclusive dutos de transferência;
- usinas termelétricas a gás natural, inclusive plantas de co-geração;
- infra-estrutura logística e de serviços de apoio.

Além de fomentar esses investimentos, o BNDES oferece linhas de crédito para conversão de equipamentos industriais e também para conversão de veículos movidos a diesel ou a gasolina para gás natural.

SUMÁRIO E CONCLUSÕES

A produção e as reservas brasileiras de gás natural cresceram substancialmente nos últimos anos. No ano de 2000, a participação do gás natural na matriz energética brasileira foi de apenas 3%. Atualmente, essa participação está próxima de 7,5% e deverá continuar crescendo.

Com a recente descoberta da Petrobrás na Bacia de Santos, as reservas de gás natural do Brasil podem passar de 250 para 650 bilhões de m³. Ressalte-se que o Sistema Petrobrás é responsável pelo suprimento de mais de 90% do mercado brasileiro.

Destaque-se, contudo, que, apesar de estar havendo um significativo aumento no consumo, a indústria de gás natural está por exigir uma regulação específica. A Lei do Petróleo não prevê tratamento adequado ao transporte e nem trata a indústria do gás natural como rede.
Em governos anteriores, houve uma decisão de se elevar a participação do gás natural na matriz energética, até 2010, para 12%. Esse aumento da participação na matriz teve como foco a geração termelétrica. É verdade que há espaço para geração termelétrica, mas ele é limitado. O gás tem outros mercados e usos mais nobres.

O gás natural pode ser utilizado na substituição de vários combustíveis como, por exemplo, madeira, carvão, óleo combustível, diesel, GLP e de energia elétrica, tanto em indústrias como no comércio. O gás natural proporciona uma combustão limpa, isenta de importantes agentes poluidores, presentes na gasolina, no óleo combustível e no óleo diesel, além de ganhos de eficiência.

Contudo, os benefícios do gás natural vão além dos ganhos de eficiência energética e ambiental. Esse combustível permite um salto de qualidade na fabricação de diversos produtos industriais, principalmente onde o controle de temperatura e a limpeza da chama para aquecimento direto sejam recomendados.

O preço convidativo, em algumas localidades, tem estimulado a utilização do gás natural veicular – GNV, principalmente no segmento de táxis, no qual a elevada quilometragem diária justifica o custo da conversão dos motores. De 2002 a 2004, a frota brasileira de veículos movidos a gás natural passou de 380 mil para mais de um milhão de unidades.

Entretanto, o principal uso do gás natural veicular deveria ser na substituição do óleo diesel em frotas cativas. Nesse caso, as vantagens econômicas e ambientais são inquestionáveis, principalmente nas grandes cidades. Já que o país tem de pagar pelo gás natural comprado da Bolívia, ele poderia ser utilizado para reduzir a conta da importação de diesel.

No início de 2004, a Petrobrás apresentou uma proposta que garante o fornecimento de gás natural para as frotas de ônibus, por dez anos, a um preço equivalente a 55% do valor do óleo diesel. Esse é um exemplo de política de preços que traz grandes benefícios ao país.

É importante ressaltar, ainda, que incentivos fiscais como, por exemplo, isenções e reduções de alíquota de ICMS, IPI e IPVA são de fundamental importância para consolidação do gás natural como alternativa energética. Contudo, esses incentivos devem ser concedidos em aplicações nas quais a sociedade seja recompensada pela renúncia fiscal.

BIBLIOGRAFIA

